Cancer Risk from Arsenic in Rice and Seaweed

A daily half-cup of cooked rice may carry a hundred times the acceptable cancer risk of arsenic. What about seaweed from the coast of Maine?

“At one point during the reign of King Cotton, farmers in the south central United States controlled boll weevils with arsenic-based pesticides, and residual arsenic still contaminates the soil.” Different plants have different reactions to arsenic exposure. Tomatoes, for example, don’t seem to accumulate much arsenic, but rice plants are really good at sucking it out of the ground—so much so that rice can be used for “arsenic phytoremediation,” meaning you can plant rice on contaminated land as a way to clear arsenic from the soil. Of course, you’re then supposed to throw the rice—and the arsenic—away. But in the South, where 80 percent of U.S. rice is grown, we instead feed it to people.

As you can see at 0:52 in my video Cancer Risk from Arsenic in Rice and Seaweed, national surveys have shown that most arsenic exposure has been measured coming from the meat in our diet, rather than from grains, with most from fish and other seafood. Well, given that seafood is contributing 90 percent of our arsenic exposure from food, why are we even talking about the 4 percent from rice?

The arsenic compounds in seafood are mainly organic—used here as a chemistry term having nothing to do with pesticides. Because of the way our body can deal with organic arsenic compounds, “they have historically been viewed as harmless.” Recently, there have been some questions about that assumption, but there’s no question about the toxicity of inorganic arsenic, which you get more of from rice.

As you can see at 1:43 in my video, rice contains more of the toxic inorganic arsenic than does seafood, with one exception: Hijiki, an edible seaweed, is a hundred times more contaminated than rice, leading some researchers to refer to it as the “so-called edible hijiki seaweed.” Governments have started to agree. In 2001, the Canadian government advised the public not to eat hijiki, followed by the United Kingdom, the European Commission, Australia, and New Zealand. The Hong Kong Centre for Food Safety advised the public not to eat hijiki and banned imports and sales of it. Japan, where there is actually a hijiki industry, just advised moderation.

What about seaweed from the coast of Maine—domestic, commercially harvested seaweed from New England? Thankfully, only one type, a type of kelp, had significant levels of arsenic. But, it would take more than a teaspoon to exceed the provisional daily limit for arsenic, and, at that point, you’d be exceeding the upper daily limit for iodine by about 3,000 percent, which is ten times more than reported in a life-threatening case report attributed to a kelp supplement.

I recommend avoiding hijiki due to its excess arsenic content and avoiding kelp due to its excess iodine content, but all other seaweeds should be fine, as long as you don’t eat them with too much rice.

In the report mentioned earlier where we learned that rice has more of the toxic inorganic arsenic than fish, we can see that there are 88.7 micrograms of inorganic arsenic per kilogram of raw white rice. What does that mean? That’s only 88.7 parts per billion, which is like 88.7 drops of arsenic in an Olympic-size swimming pool of rice. How much cancer risk are we talking about? To put it into context, the “usual level of acceptable risk for carcinogens” is one extra cancer case per million. That’s how we typically regulate cancer-causing substances. If a chemical company wants to release a new chemical, we want them to show that it doesn’t cause more than one in a million excess cancer cases.

The problem with arsenic in rice is that the excess cancer risk associated with eating just about a half cup of cooked rice a day could be closer to one in ten thousand, not one in a million, as you can see at 4:07 in my video. That’s a hundred times the acceptable cancer risk. The FDA has calculated that one serving a day of the most common rice, long grain white, would cause not 1 in a million extra cancer cases, but 136 in a million.

And that’s just the cancer effects of arsenic. What about all the non-cancer effects? The FDA acknowledges that, in addition to cancer, the toxic arsenic found in rice “has been associated with many non-cancer effects, including ischemic heart disease, diabetes, skin lesions, renal [kidney] disease, hypertension, and stroke.” Why, then, did the FDA only calculate the cancer risks of arsenic? “Assessing all the risks associated with inorganic arsenic would take considerable time and resources and would delay taking any needed action to protect public health” from the risks of rice.

“Although physicians can help patients reduce their dietary arsenic exposure, regulatory agencies, food producers, and legislative bodies have the most important roles” in terms of public health-scale changes. “Arsenic content in U.S.-grown rice has been relatively constant throughout the last 30 years,” which is a bad thing.

“Where grain arsenic concentration is elevated due to ongoing contamination, the ideal scenario is to stop the contamination at the source.” Some toxic arsenic in foods is from natural contamination of the land, but soil contamination has also come from the dumping of arsenic-containing pesticides, as well as the use of arsenic-based drugs in poultry production and then the spreading of arsenic-laced chicken manure on the land. Regardless of why south central U.S. rice paddies are so contaminated, we shouldn’t be growing rice in arsenic-contaminated soil.

What does the rice industry have to say for itself? Well, it started a website called ArsenicFacts. Its main argument appears to be that arsenic is everywhere, we’re all exposed to it every day, and it’s in most foods. But shouldn’t we try to cut down on the most concentrated sources? Isn’t that like saying look, diesel exhaust is everywhere, so why not suck on a tailpipe? The industry website quotes a nutrition professor saying, “All foods contain arsenic. So, if you eliminate arsenic from your diet, you will decrease your risk…and you’ll die of starvation.” That’s like Philip Morris saying that the only way to completely avoid secondhand smoke is to never breathe—but then you’ll asphyxiate, so you might as well just start smoking yourself. If you can’t avoid it, you might as well consume the most toxic source you can find?!

That’s the same tack the poultry industry took. Arsenic and chicken? “No need to worry” because there’s a little arsenic everywhere. That’s why it’s okay the industry fed chickens arsenic-based drugs for 70 years. If you can’t beat ’em, join ’em.

How can the rice industry get away with selling a product containing a hundred times the acceptable cancer risk? I cover that and so much more in my other videos on arsenic and rice, which also include concrete recommendations on how to mediate your risk.

Check out:

Pesticides were not the only source of arsenic. Poultry poop, too, if you can believe it! I cover that story in Where Does the Arsenic in Chicken Come From? and Where Does the Arsenic in Rice, Mushrooms, and Wine Come From?.

Chronic low-dose arsenic exposure is associated with more than just cancer. See The Effects of Too Much Arsenic in the Diet.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

What White Blood Cell Count Should We Shoot for?

At the start of my video What Does a Low White Blood Cell Count Mean?, you can see what it looks like when you take a drop of blood, smear it between two pieces of glass, and view at it under a microscope: a whole bunch of little, round, red blood cells and a few big, white blood cells. Red blood cells carry oxygen, while white blood cells are our immune system’s foot soldiers. We may churn out 50 billion new white blood cells a day. In response to inflammation or infection, that number can shoot up to a 100 billion or more. In fact, pus is largely composed of: millions and millions of white blood cells.

Testing to find out how many white blood cells we have at any given time is one of the most common laboratory tests doctors order. It’s ordered it hundreds of millions of times a year. If, for example, you end up in the emergency room with abdominal pain, having a white blood cell count above about 10 billion per quart of blood may be a sign you have appendicitis. Most Americans fall between 4.5 and 10, but most Americans are unhealthy. Just because 4.5 to 10 is typical doesn’t mean it’s ideal. It’s like having a “normal” cholesterol level in a society where it’s normal to die of heart disease, our number-one killer. The average American is overweight, so if your weight is “normal,” that’s actually a bad thing.

In fact, having excess fat itself causes inflammation within the body, so it’s no surprise that those who are obese walk around with two billion more white cells per quart of blood. Given that, perhaps obese individuals should have their own “normal” values. As you can see at 2:06 in my video, if someone with a 47-inch waist walks into the ER with a white blood cell count of 12, 13, or even 14, they may not have appendicitis or an infection. That may just be their normal baseline level, given all the inflammation they have in their body from the excess fat. So, normal levels are not necessarily healthy levels.

It’s like smoking. As you can see at 2:31 in my video, if you test identical twins and one smokes but the other doesn’t, the smoker is going to end up with a significantly higher white cell count. In Japan, for example, as smoking rates have steadily dropped, so has the normal white count range. In fact, it’s dropped such that about 8 percent of men who have never smoked would now be flagged as having abnormally low white counts if you used a cut-off of 4. But, when that cut-off of 4 was set, most people were smoking. So, maybe 3 would be a better lower limit. The inflammation caused by smoking may actually be one of the reasons cigarettes increase the risk of heart attacks, strokes, and other inflammatory diseases. So, do people who have lower white counts have less heart disease, cancer, and overall mortality? Yes, yes, and yes. People with lower white blood cell counts live longer. Even within the normal range, every one point drop may be associated with a 20 percent drop in the risk of premature death.

As you can see at 3:39 in my video, there is an exponential increase in risk in men as white count goes up, even within the so-called normal range, and the same is found for women. The white blood cell count is a “stable, well-standardized, widely available and inexpensive measure of systemic inflammation.” In one study, half of the women around 85 years of age who had started out with white counts under 5.6 were still alive, whereas 80 percent of those who started out over 7 were dead, as you can see at 4:05 in my video—and white blood cell counts of 7, 8, 9, or even 10 would be considered normal. Being at the high end of the normal range may place one at three times the risk of dying from heart disease compared to being at the lower end.

The same link has been found for African-American men and women, found for those in middle age, found at age 75, found at age 85, and found even in our 20s and 30s: a 17 percent increase in coronary artery disease incidence for each single point higher.

As you can see at 5:00 in my video, the higher your white count, the worse your arterial function may be and the stiffer your arteries may be, so it’s no wonder white blood cell count is a useful predictor of high blood pressure and artery disease in your heart, brain, legs, and neck. Even diabetes? Yes, even diabetes, based on a compilation of 20 different studies. In fact, it may be associated with everything from fatty liver disease to having an enlarged prostate. And, having a higher white blood cell count is also associated with an increased risk of dying from cancer. So, what would the ideal range be? I cover that in my video What Is the Ideal White Blood Cell Count?.

A higher white blood cell count may be an important predictor for cardiovascular disease incidence and mortality, decline in lung function, cancer mortality, all-cause mortality, heart attacks, strokes, and premature death in general. This is no surprise, as the number of white blood cells we have circulating in our bloodstreams are a marker of systemic inflammation. Our bodies produce more white blood cells day to day in response to inflammatory insults.

We’ve known about this link between higher white counts and heart attacks since the 1970s, when we found that higher heart attack risk was associated with higher white blood cell counts, higher cholesterol levels, and higher blood pressures, as you can see at 0:53 in my video What Is the Ideal White Blood Cell Count?. This has been found in nearly every study done since then. There are decades of studies involving hundreds of thousands of patients showing dramatically higher mortality rates in those with higher white counts. But why? Why does white blood cell count predict mortality? It may be because it’s a marker of inflammation and oxidation in the body. In fact, it may even be a biomarker for how fast we are aging. It may be more than just an indicator of inflammation—it may also be an active player, contributing directly to disease via a variety of mechanisms, including the actual obstruction of blood flow.

The average diameter of a white blood cell is about seven and a half micrometers, whereas our tiniest vessels are only about five micrometers wide, so the white blood cell has to squish down into a sausage shape in order to squeeze through. When there’s inflammation present, these cells can get sticky. As you can see at 2:20 in my video, a white blood cell may plug up a vessel as it exits a small artery and tries to squeeze into a capillary, slowing down or even momentarily stopping blood flow. And, if it gets stuck there, it can end up releasing all of its internal weaponry, which is normally reserved for microbial invaders, and damage our blood vessels. This may be why in the days leading up to a stroke or heart attack, you may find a spike in the white cell count.

Whether white count is just a marker of inflammation or an active participant, it’s better to be on the low side. How can we reduce the level of inflammation in our body? Staying away from even second-hand smoke can help drop your white count about half of a point. Those who exercise also appear to have an advantage, but you don’t know if it’s cause and effect unless you put it to the test. In one study, two months of Zumba classes—just one or two hours a week—led to about a point and a half drop in white count. In fact, that may be one of the reasons exercise is so protective. But is that just because they lost weight?

Fitness and fatness both appear to play a role. More than half of obese persons with low fitness—51.5 percent—have white counts above 6.6, but those who are more fit or who have less fat are less likely to have counts that high, as you can see at 3:47 in my video. Of course, that could just be because exercisers and leaner individuals are eating healthier, less inflammatory diets. How do we know excess body fat itself increases inflammation, increases the white count? You’d have to find some way to get people to lose weight without changing their diet or exercise habit. How’s that possible? Liposuction. If you suck about a quart of fat out of people, you can significantly drop their white count by about a point. Perhaps this should get us to rethink the so-called normal reference range for white blood cell counts. Indeed, maybe we should revise it downward, like we’ve done for cholesterol and triglycerides.

Until now, we’ve based normal values on people who might be harboring significant background inflammatory disease. But, if we restrict it to those with normal C-reactive protein, another indicator of inflammation, then instead of “normal” being 4.5 to 10, perhaps we should revise it closer to 3 to 9.

Where do the healthiest populations fall, those not suffering from the ravages of chronic inflammatory diseases, like heart disease and common cancers? Populations eating diets centered around whole plant foods average about 5, whereas it was closer to 7 or 8 in the United States at the time. How do we know it isn’t just genetic? As you can see at 5:38 in my video, if you take those living on traditional rural African diets, who have white blood cell counts down around 4 or 5, and move them to Britain, they end up closer to 6, 7, or even 8. Ironically, the researchers thought this was a good thing, referring to the lower white counts on the “uncivilized” diet as neutropenic, meaning having too few white blood cells. They noted that during an infection or pregnancy, when more white cells are needed, the white count came right up to wherever was necessary. So, the bone marrow of those eating traditional plant-based diets had the capacity to create as many white cells as needed but “suffers from understimulation.”

As you can see at 6:26 in my video, similar findings were reported in Western plant eaters, with an apparent stepwise drop in white count as diets got more and more plant based, but could there be non-dietary factors, such as lower smoking rates, in those eating more healthfully? What we need is an interventional trial to put it to the test, and we got one: Just 21 days of removing meat, eggs, dairy, alcohol, and junk affected a significant drop in white count, even in people who started out down at 5.7.

What about patients with rheumatoid arthritis who started out even higher, up around 7? As you can see at 7:03 in my video, there was no change in the control group who didn’t change their diet, but there was a 1.5 point drop within one month on whole food plant-based nutrition. That’s a 20 percent drop. That’s more than the drop-in inflammation one might get quitting a 28-year pack-a-day smoking habit. The most extraordinary drop I’ve seen was in a study of 35 asthmatics. After four months of a whole food plant-based diet, their average white count dropped nearly 60 percent, from around 12 down to 5, though there was no control group nor enough patients to achieve statistical significance.

If white blood cell count is such a clear predictor of mortality and is so inexpensive, reliable, and available, why isn’t it used more often for diagnosis and prognosis? Maybe it’s a little too inexpensive. The industry seems more interested in fancy new risk factors it can bill for.

I touch on the health of the rural Africans I discussed in How Not to Die from Heart Disease.

For more on fighting inflammation, see:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Mad Cow Disease and Cosmetics

As I discuss in my video Which Intestines for Food and Cosmetics?, the Food and Drug Administration (FDA) recently reopened comments about its policy of allowing some intestines, but not others, into the U.S. food supply. When the first few cases of mad cow disease started popping up, the FDA’s gut reaction was to ban all guts from food and personal care products. Then, in 2005, the U.S. Department of Agriculture and FDA amended their draft rule to “permit the use of the entire small intestine for human food” if the last 80 uncoiled inches going to the colon is removed. Since then, however, studies have shown that infectious mad cow prions can be found throughout all parts of the intestine, from the stomach down to the cow’s colon, raising the question of whether all entrails should be removed once again from the food supply.

The North American Meat Association said no, wanting to keep cattle insides inside the food supply. Similarly, the Cosmetic, Toiletry, and Fragrance Association (CTFA, now the Personal Care Products Council) protested the concern, arguing that banning downer and dead cattle, as well as their brains, skulls, eyes, spinal cords, intestines, and tonsils, could put our nation’s supply of cosmetics in jeopardy. There could be a tallow shortage for soap, for example. The FDA may not realize that cosmetics and personal care products are a quarter trillion-dollar industry worldwide.

In the end, the FDA “tentatively” concluded that intestines should continue to be allowed in the food and cosmetic supply because “[o]nly trace amounts of infectivity have been found” throughout the bowels of cattle. The agency had to come to that conclusion because, otherwise, the meat would have to be banned as well. Indeed, new research shows there’s mad cow infectivity in the animals’ muscles, too, and not just in the atypical cases of bovine spongiform encephalopathy (BSE), like the last mad cow found in California. We now know it’s in typical BSE as well: Low levels of infectious prions have also been found in the ribs, shoulders, tenderloins, sirloin tips, and round cuts of meat.

The latest estimates from Britain suggest 15,000 people are currently incubating the human form of mad cow disease, contracted through the consumption of infected meat. Fewer than 200 Brits have died so far of variant Creutzfeldt-Jakob disease, but the incubation period for this invariably fatal neurodegenerative disease—that is, the time between eating the meat and one’s brain filling up with holes—can be decades. The fact that so many people are carrying it has important implications for the safety of blood transfusions, which is why many Americans who’ve lived in England are barred by the Red Cross from donating blood. Also at risk is the safety of handling surgical instruments that may have cut into someone who’s a carrier, as it is so difficult to sterilize anything once it’s been contaminated.

Given these factors, it may be prudent to err on the side of caution when regulating which intestines are allowed on and in our mouths, but it’s a balance. As one meat company pointed out, guts are not just used for lipstick—intestines are human food, “providing us with a precious source of protein which is essential for our human population.”

Unfortunately, this is not the first time the FDA has caved to industry pressures. See, for example:

As scary as rare infections like mad cow disease are, we are much more likely to be disabled or killed by more conventional foodborne pathogens such as bacteria. Check out:

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations: