Clostridium difficile in the Food Supply

Clostridium difficile in the Food Supply

Clostridium difficile is one of our most urgent bacterial threats, sickening a quarter million Americans every year, and killing thousands at the cost of a billion dollars a year. And, it’s on the rise.

As shown in C. difficile Superbugs in Meat, uncomplicated cases have been traditionally managed with powerful antibiotics, but recent reports suggest that hypervirulent strains are increasingly resistant to medical management. There’s been a rise in the percentage of cases that end up under the knife, which could be a marker of the emergence of these hypervirulent strains. Surgeons may need to remove our colon entirely to save our lives, although the surgery is so risky that the operation alone may kill us half the time.

Historically, most cases appeared in hospitals, but a landmark study published in the New England Journal of Medicine found that only about a third of cases could be linked to contact with an infected patient.

Another potential source is our food supply.

In the US, the frequency of contamination of retail chicken with these superbugs has been documented to be up to one in six packages off of store shelves. Pig-derived C. diff, however, has garnered the greatest attention from public health personnel, because the same human strain that’s increasingly emerging in the community outside of hospitals is the major strain among pigs.

Since the turn of the century, C. diff is increasingly being reported as a major cause of intestinal infections in piglets. C. diff is now one of the most common causes of intestinal infections in baby piglets in the US. Particular attention has been paid to pigs because of high rates of C. diff shedding into their waste, which can lead to the contamination of retail pork. The U.S. has the highest levels of C. diff meat contamination tested so far anywhere in the world.

Carcass contamination by gut contents at slaughter probably contributes most to the presence of C. diff in meat and meat products. But why is the situation so much worse in the US? Slaughter techniques differ from country-to-country, with those in the United States evidently being more of the “quick and dirty” variety.

Colonization or contamination of pigs by superbugs, such as C. difficile and MRSA, at the farm production level may be more important than at the slaughterhouse level, though. One of the reasons sows and their piglets may have such high rates of C. diff is because of cross-contamination of feces in the farrowing crates, which are narrow metal cages that mother pigs are kept in while their piglets are nursing.

Can’t you just follow food safety guidelines and cook the meat through? Unfortunately, current food safety guidelines are ineffective against C. difficile. To date, most food safety guidelines recommend cooking to an internal temperature as low as 63o C–the official USDA recommendation for pork–but recent studies show that C. diff spores can survive extended heating at 71o. Therefore, the guidelines should be raised to take this potentially killer infection into account.

One of the problems is that sources of C. diff food contamination might include not only fecal contamination on the surface of the meat, but transfer of spores from the gut into the actual muscles of the animal, inside the meat. Clostridia bacteria like C. diff comprise one of the main groups of bacteria involved in natural carcass degradation; and so, by colonizing muscle tissue before death, C. diff can not only transmit to new hosts, like us, that eat the muscles, but give themselves a head start on carcass break-down.

Never heard of C. diff? That’s the Toxic Megacolon Superbug I’ve talked about before.

Another foodborne illness tied to pork industry practices is yersiniosis. See Yersinia in Pork.

MRSA (Methicillin-resistant Staph aureus) is another so-called superbug in the meat supply:

More on the scourge of antibiotic resistance and what can be done about it:

How is it even legal to sell foods with such pathogens? See Salmonella in Chicken & Turkey: Deadly But Not Illegal and Chicken Salmonella Thanks to Meat Industry Lawsuit.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

The Food Safety Risk of Organic versus Conventional

The stated principles of organic agriculture are “health, ecology, fairness, and care,” but if you ask people why they buy organic, the strongest predictor is concern for their own health. People appear to spend more for organic foods for selfish reasons, rather than altruistic motives. Although organic foods may not have more nutrients per dollar (see my video Are Organic Foods More Nutritious?), consumption of organic foods may reduce exposure to pesticide residues and antibiotic-resistant bacteria.

Food safety-wise, researchers found no difference in the risk for contamination with food poisoning bacteria in general. Both organic and conventional animal products have been found to be commonly contaminated with Salmonella and Campylobacter, for example. Most chicken samples (organic and inorganic), were found to be contaminated with Campylobacter, and about a third with Salmonella, but the risk of exposure to multidrug-resistant bacteria was lower with the organic meat. They both may carry the same risk of making us sick, but food poisoning from organic meat may be easier for doctors to treat.

What about the pesticides? There is a large body of evidence on the relation between exposure to pesticides and elevated rate of chronic diseases such as different types of cancers, diabetes, neurodegenerative disorders like Parkinson’s, Alzheimer’s, and ALS, as well as birth defects and reproductive disorders—but these studies were largely on people who live or work around pesticides.

Take Salinas Valley California, for example, where they spray a half million pounds of the stuff. Daring to be pregnant in an agricultural community like that may impair childhood brain development, such that pregnant women with the highest levels running through their bodies (as measured in their urine) gave birth to children with an average deficit of about seven IQ points. Twenty-six out of 27 studies showed negative effects of pesticides on brain development in children. These included attention problems, developmental disorders, and short-term memory difficulties.

Even in urban areas, if you compare kids born with higher levels of a common insecticide in their umbilical cord blood, those who were exposed to higher levels are born with brain anomalies. And these were city kids; so, presumably this was from residential pesticide use.

Using insecticides inside your house may also be a contributing risk factor for childhood leukemia. Pregnant farmworkers may be doubling the odds of their child getting leukemia and increase their risk of getting a brain tumor. This has led to authorities advocating that awareness of the potentially negative health outcome for children be increased among populations occupationally exposed to pesticides, though I don’t imagine most farmworkers have much of a choice.

Conventional produce may be bad for the pregnant women who pick them, but what about our own family when we eat them?

Just because we spray pesticides on our food in the fields doesn’t necessarily mean it ends up in our bodies when we eat it, or at least we didn’t know that until a study was published in 2006. Researchers measured the levels of two pesticides running through children’s bodies by measuring specific pesticide breakdown products in their urine. In my video, Are Organic Foods Safer?, you can see the levels of pesticides flowing through the bodies of three to 11-year-olds during a few days on a conventional diet. The kids then went on an organic diet for five days and then back to the conventional diet. As you can see, eating organic provides a dramatic and immediate protective effect against exposures to pesticides commonly used in agricultural production. The study was subsequently extended. It’s clear by looking at the subsequent graph in the video when the kids were eating organic versus conventional. What about adults, though? We didn’t know… until now.

Thirteen men and women consumed a diet of at least 80% organic or conventional food for seven days and then switched. No surprise, during the mostly organic week, pesticide exposure was significantly reduced by a nearly 90% drop.

If it can be concluded that consumption of organic foods provides protection against pesticides, does that also mean protection against disease? We don’t know. The studies just haven’t been done. Nevertheless, in the meantime, the consumption of organic food provides a logical precautionary approach.

For more on organic foods:

For more on the infectious disease implications of organic versus conventional, see Superbugs in Conventional vs. Organic Chicken. Organic produce may be safer too. See Norovirus Food Poisoning from Pesticides. Organic eggs may also have lower Salmonella risk, which is an egg-borne epidemic every year in the US. See my video Who Says Eggs Aren’t Healthy or Safe?

More on Parkinson’s and pesticides in Preventing Parkinson’s Disease With Diet.

Those surprised by the California data might have missed my video California Children Are Contaminated.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations: