What About Coconuts, Coconut Milk, and Coconut Oil MCTs?

Do the medium-chain triglycerides in coconut oil and the fiber in flaked coconut counteract the negative effects on cholesterol and artery function?

Studies of populations who eat a lot of coconuts are “frequently cited” by those who sell coconut oil “as evidence that coconut oil does not have negative effects on cardiovascular health.” For example, there was an apparent absence of stroke and heart disease on the island of Kativa in Papua New Guinea. What were they eating? Their diets centered around tubers, like sweet potatoes, with fruits, greens, nuts, corn, and beans. Although they ate fish a few times a week, they were eating a largely whole food plant-based diet. It’s no wonder they may have had such low rates of artery disease. And, one of the whole foods they were eating was coconut, not coconut oil.

Now, if you go to Pukapuka, even more coconuts are eaten. In fact, as you can see at 0:51 in my video What About Coconuts, Coconut Milk, and Coconut Oil MCTs?, there’s even an island where coconuts make up most of what people eat—and they do get high cholesterol. How can a population eating 87 percent plant-based, with no dairy and only rare consumption of red meat, chicken, and eggs, have cholesterol levels over 200? Well, they’re eating all those coconuts every day. What are their disease rates like? We don’t know. There are no clinical surveys, no epidemiological death data, and no autopsies. Some EKGs were taken, which can sometimes pick up evidence of past heart attacks, but they found few abnormalities. The sample was too small to be a definitive study, though. And, even if they did have low disease rates, they weren’t eating coconut oil—they were eating coconut in its whole form.

Coconut oil proponents pointing to these studies is like the high fructose corn syrup lobby pointing to studies of healthy populations who eat corn on the cob or the sugar industry pointing to studies on fruit consumption and saying you can eat all the refined sugar you want. But fruit has fiber and so do coconuts. Just as adding psyllium fiber (Metamucil) to coconut oil can help blunt the adverse effects on cholesterol, fiber derived from defatted coconut itself can reduce cholesterol levels as much as oat bran. What’s more, the plant protein in coconuts, which is also missing from the oil, may help explain why whole coconuts may not have the same effects on cholesterol. Although coconut fat in the form of powdered coconut milk may not have the same effects on cholesterol as coconut oil, frequent consumption, defined as three or more times a week, has been associated with increased risk of vascular disease, stroke, and heart disease. And, no wonder, as coconut milk may acutely impair artery function as badly as a sausage and egg McMuffin.

Researchers tested three different meals including a Western high-fat meal that “consisted of an Egg McMuffin®, Sausage McMuffin®, 2 hash brown patties and a non-caffeinated beverage (McDonald’s Corporation)” a local high-fat meal, and an “isocaloric low-fat meal.” The study was conducted in Singapore, so the more traditional local high-fat meal was rice cooked in coconut milk and served with anchovies and an egg. These two different high-fat meals were put up against the same amount of calories in an unhealthy low-fat meal of Frosted Flakes, skim milk, and juice. At 3:21 in my video, you can see the artery function—that is, its ability to relax normally—before and after eating each of the three meals. Researchers found that artery function is significantly crippled within hours of consuming the McMuffins and also the local high-fat meal with coconut milk. So, whether the fat is mostly from meat and oil or from coconut milk, the arteries clamped down similarly, whereas that horrible sugary breakfast had no bad effect on artery function. Why? Because as terrible as the Frosted Flakes meal was, it had no saturated fat at all. (It also didn’t have contain any eggs, so that might have helped, too.)

Coconut oil proponents also try to argue that coconut oil has MCTs, medium-chain triglycerides, which are shorter-chain saturated fats that aren’t as bad as the longer-chain saturated fats in meat and dairy. You can’t apply the MCT research to coconut oil, though. Why not? Well, MCT oil is composed of MCTs—about 50 percent of the medium-chain fat caprylic acid and the other 50 percent of the MCT capric acid—whereas those MCTs make up only about 10 percent of coconut oil. Most of coconut oil is the cholesterol-raising, longer-chain saturated fats, lauric and myristic. “It is therefore inaccurate to consider coconut oil to contain either predominantly medium-chain fatty acids or predominantly medium-chain triglycerides. Thus, the evidence on medium-chain triglycerides cannot be extrapolated to coconut oil.”

It’s actually quite “a common misconception” that the saturated fat in coconut oil is comprised of mainly MCTs. Actually, as we discussed, coconut oil is mainly lauric and myristic, both of which have potent bad LDL cholesterol-raising effects. “Coconut oil should therefore not be advised for people who should or want to reduce their risk of CHD,” coronary heart disease, which is the number-one killer of U.S. men and women. The beef industry, for example, loves to argue that beef fat contains stearic acid, a type of saturated fat that doesn’t raise cholesterol. Yes, but it also has palmitic and myristic acids that, like lauric acid, do raise cholesterol, as you can see at 5:12 in my video.

If you compare the effects of different saturated fats, as you can see at 5:29 in my video, stearic acid does have a neutral effect on LDL, but palmitic, myristic, and lauric acids shoot it up—and, frankly, so may MCT oil itself, as it bumps up LDL 15 percent compared to control. Bottom line? “Popular belief”—spread by the coconut oil industry—“holds that coconut oil is healthy, a notion not supported by scientific data.” The science just doesn’t support it.

So, basically, “coconut oil should be viewed no differently” from animal sources of dietary saturated fat. A recent review published in the Journal of the American College of Cardiology put it even more simply in its recommendations for patients. When it comes to coconut oil, “avoid.”

Okay, but doesn’t saturated fat boost HDL, the so-called good cholesterol? Check out Coconut Oil and the Boost in HDL “Good” Cholesterol.


Isn’t coconut oil supposed to be good for Alzheimer’s, though? See my video Does Coconut Oil Cure Alzheimer’s?

If you want to learn more about the original McMuffin artery studies, see The Leaky Gut Theory of Why Animal Products Cause Inflammation.

You may also be interested in Flashback Friday: Coconut Oil and Abdominal Fat.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Do the Pros of Brown Rice Outweigh the Cons of Arsenic?

Are there unique benefits to brown rice that would justify keeping it in our diet despite the arsenic content?

For years, warnings had been given about the arsenic levels in U.S. rice potentially increasing cancer risk, but it had never been put to the test until a study out of Harvard. The finding? “Long-term consumption of total rice, white rice or brown rice[,] was not associated with risk of developing cancer in US men and women.” This was heralded as good news. Indeed, no increased cancer risk found even among those eating five or more servings of rice per week. But, wait a second: Brown rice is a whole grain, a whole plant food. Shouldn’t brown rice be protective and not just neutral? I discuss this in my video Do the Pros of Brown Rice Outweigh the Cons of Arsenic?.

If you look at whole grains in general, there is “a significant inverse”—or protective—“association between total whole-grain intake and risk of mortality from total cancers,” that is, dying from cancer. My Daily Dozen recommendation of at least three servings of whole grains a day was associated with a 10 percent lower risk of dying from cancer, a 25 percent lower risk of dying from heart attacks or strokes, and a 17 percent lower risk of dying prematurely across the board, whereas rice consumption in general was not associated with mortality and was not found to be protective against heart disease or stroke. So, maybe this lack of protection means that the arsenic in rice is increasing disease risk, so much so that it’s cancelling out some of the benefits of whole-grain brown rice.

Consumer Reports suggested moderating one’s intake of even brown rice, but, given the arsenic problem, is there any reason we should go out of our way to retain any rice in our diet at all? With all of the other whole grain options out there, should we just skip the rice completely? Or, are there some unique benefits we can get from rice that would justify continuing to eat it, even though it has ten times more arsenic than other grains?

One study showed that “a brown rice based vegan diet” beat out the conventional Diabetes Association diet, even after adjusting for the extra belly fat lost by the subjects on the vegan diet, but that may have been due to the plant-based nature of their diet rather than just how brown rice-based it was.

Another study found a profound improvement in insulin levels after just five days eating brown rice compared to white rice, but was that just because the white rice made people worse? No, the brown rice improved things on its own, but the study was done with a South Indian population eating a lot of white rice to begin with, so this may have indeed been at least in part a substitution effect. And yet another study showed that instructing people to eat about a cup of brown rice a day “could significantly reduce weight, waist and hip circumference, BMI, Diastole blood pressure,” and inflammation—and not just because it was compared to white. However, a larger, longer study failed to see much more than a blood pressure benefit, which was almost as impressive in the white-rice group, so, overall, not too much to write home about.

Then, another study rolled around—probably the single most important study on the pro-rice sideshowing a significant improvement in artery function after eight weeks of eating about a daily cup of brown rice, but not white, as you can see at 3:18 in my video, and sometimes even acutely. If you give someone a meal with saturated fat and white rice, you can get a drop in artery function within an hour of consumption if you have some obesity-related metabolic derangements. But, if you give brown rice instead of white, artery function appears protected against the adverse effects of the meal. Okay, so brown rice does show benefits in interventional studies, but the question is whether it shows unique benefits. Instead, what about oatmeal or whole wheat?

Well, first, researchers needed to design an artery-crippling meal, high in saturated fat. They went with a Haagen Daaz, coconut cream, and egg milkshake given with a bowl of oatmeal or “a comparable bowl of whole rolled wheat.” What do you think happened? Do you think these whole grains blocked the artery-damaging effects like the brown rice did? The whole oats worked, but the whole wheat did not. So, one could argue that brown rice may have an edge over whole wheat. Do oats also have that beneficial long-term effect that brown rice did? The benefit was of a similar magnitude but did not reach statistical significance.

So, what’s the bottom line? Until we know more, my current thinking on the matter is that if you really like rice, you can moderate your risk by cutting down, choosing lower arsenic varieties, and cooking it in a way to lower exposure even further. But, if you like other whole grains just as much and don’t really care if you have rice versus quinoa or another grain, I’d choose the lower arsenic option.

Tada! Done with arsenic in the food supply—for now. Should the situation change, I’ll produce another video on the latest news. Make sure you’re subscribed so you don’t miss any updates.


Here are all 13 videos in the series, in case you missed any or want to go back and review:

And you may be interested in Benefits of Turmeric for Arsenic Exposure.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Cancer Risk from Arsenic in Rice and Seaweed

A daily half-cup of cooked rice may carry a hundred times the acceptable cancer risk of arsenic. What about seaweed from the coast of Maine?

“At one point during the reign of King Cotton, farmers in the south central United States controlled boll weevils with arsenic-based pesticides, and residual arsenic still contaminates the soil.” Different plants have different reactions to arsenic exposure. Tomatoes, for example, don’t seem to accumulate much arsenic, but rice plants are really good at sucking it out of the ground—so much so that rice can be used for “arsenic phytoremediation,” meaning you can plant rice on contaminated land as a way to clear arsenic from the soil. Of course, you’re then supposed to throw the rice—and the arsenic—away. But in the South, where 80 percent of U.S. rice is grown, we instead feed it to people.

As you can see at 0:52 in my video Cancer Risk from Arsenic in Rice and Seaweed, national surveys have shown that most arsenic exposure has been measured coming from the meat in our diet, rather than from grains, with most from fish and other seafood. Well, given that seafood is contributing 90 percent of our arsenic exposure from food, why are we even talking about the 4 percent from rice?

The arsenic compounds in seafood are mainly organic—used here as a chemistry term having nothing to do with pesticides. Because of the way our body can deal with organic arsenic compounds, “they have historically been viewed as harmless.” Recently, there have been some questions about that assumption, but there’s no question about the toxicity of inorganic arsenic, which you get more of from rice.

As you can see at 1:43 in my video, rice contains more of the toxic inorganic arsenic than does seafood, with one exception: Hijiki, an edible seaweed, is a hundred times more contaminated than rice, leading some researchers to refer to it as the “so-called edible hijiki seaweed.” Governments have started to agree. In 2001, the Canadian government advised the public not to eat hijiki, followed by the United Kingdom, the European Commission, Australia, and New Zealand. The Hong Kong Centre for Food Safety advised the public not to eat hijiki and banned imports and sales of it. Japan, where there is actually a hijiki industry, just advised moderation.

What about seaweed from the coast of Maine—domestic, commercially harvested seaweed from New England? Thankfully, only one type, a type of kelp, had significant levels of arsenic. But, it would take more than a teaspoon to exceed the provisional daily limit for arsenic, and, at that point, you’d be exceeding the upper daily limit for iodine by about 3,000 percent, which is ten times more than reported in a life-threatening case report attributed to a kelp supplement.

I recommend avoiding hijiki due to its excess arsenic content and avoiding kelp due to its excess iodine content, but all other seaweeds should be fine, as long as you don’t eat them with too much rice.

In the report mentioned earlier where we learned that rice has more of the toxic inorganic arsenic than fish, we can see that there are 88.7 micrograms of inorganic arsenic per kilogram of raw white rice. What does that mean? That’s only 88.7 parts per billion, which is like 88.7 drops of arsenic in an Olympic-size swimming pool of rice. How much cancer risk are we talking about? To put it into context, the “usual level of acceptable risk for carcinogens” is one extra cancer case per million. That’s how we typically regulate cancer-causing substances. If a chemical company wants to release a new chemical, we want them to show that it doesn’t cause more than one in a million excess cancer cases.

The problem with arsenic in rice is that the excess cancer risk associated with eating just about a half cup of cooked rice a day could be closer to one in ten thousand, not one in a million, as you can see at 4:07 in my video. That’s a hundred times the acceptable cancer risk. The FDA has calculated that one serving a day of the most common rice, long grain white, would cause not 1 in a million extra cancer cases, but 136 in a million.

And that’s just the cancer effects of arsenic. What about all the non-cancer effects? The FDA acknowledges that, in addition to cancer, the toxic arsenic found in rice “has been associated with many non-cancer effects, including ischemic heart disease, diabetes, skin lesions, renal [kidney] disease, hypertension, and stroke.” Why, then, did the FDA only calculate the cancer risks of arsenic? “Assessing all the risks associated with inorganic arsenic would take considerable time and resources and would delay taking any needed action to protect public health” from the risks of rice.

“Although physicians can help patients reduce their dietary arsenic exposure, regulatory agencies, food producers, and legislative bodies have the most important roles” in terms of public health-scale changes. “Arsenic content in U.S.-grown rice has been relatively constant throughout the last 30 years,” which is a bad thing.

“Where grain arsenic concentration is elevated due to ongoing contamination, the ideal scenario is to stop the contamination at the source.” Some toxic arsenic in foods is from natural contamination of the land, but soil contamination has also come from the dumping of arsenic-containing pesticides, as well as the use of arsenic-based drugs in poultry production and then the spreading of arsenic-laced chicken manure on the land. Regardless of why south central U.S. rice paddies are so contaminated, we shouldn’t be growing rice in arsenic-contaminated soil.

What does the rice industry have to say for itself? Well, it started a website called ArsenicFacts. Its main argument appears to be that arsenic is everywhere, we’re all exposed to it every day, and it’s in most foods. But shouldn’t we try to cut down on the most concentrated sources? Isn’t that like saying look, diesel exhaust is everywhere, so why not suck on a tailpipe? The industry website quotes a nutrition professor saying, “All foods contain arsenic. So, if you eliminate arsenic from your diet, you will decrease your risk…and you’ll die of starvation.” That’s like Philip Morris saying that the only way to completely avoid secondhand smoke is to never breathe—but then you’ll asphyxiate, so you might as well just start smoking yourself. If you can’t avoid it, you might as well consume the most toxic source you can find?!

That’s the same tack the poultry industry took. Arsenic and chicken? “No need to worry” because there’s a little arsenic everywhere. That’s why it’s okay the industry fed chickens arsenic-based drugs for 70 years. If you can’t beat ’em, join ’em.

How can the rice industry get away with selling a product containing a hundred times the acceptable cancer risk? I cover that and so much more in my other videos on arsenic and rice, which also include concrete recommendations on how to mediate your risk.


Check out:

Pesticides were not the only source of arsenic. Poultry poop, too, if you can believe it! I cover that story in Where Does the Arsenic in Chicken Come From? and Where Does the Arsenic in Rice, Mushrooms, and Wine Come From?.

Chronic low-dose arsenic exposure is associated with more than just cancer. See The Effects of Too Much Arsenic in the Diet.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations: