Açaí vs. Wild Blueberries for Artery Function

“Plant-based diets…have been found to reduce the risk of cardiovascular disease” and some of our other leading causes of death and disability. “Studies have shown that the longest living and least dementia-prone populations subsist on plant-based diets.” So why focus on açaí berries, just one plant, for brain health and performance?

Well, “foods rich in polyphenols…improve brain health,” and açaí berries contain lots of polyphenols and antioxidants, so perhaps that’s why they could be beneficial. If you’re only looking at polyphenols, though, there are more than a dozen foods that contain more per serving, like black elderberry, regular fruits like plums, flaxseeds, dark chocolate, and even just a cup of coffee.

As you can see at 1:02 in my video The Benefits of Açaí vs. Blueberries for Artery Function, in terms of antioxidants, açaí berries may have ten times more antioxidant content than more typical fruits, like peaches and papayas, and five times more antioxidants than strawberries. But blackberries, for instance, appear to have even more antioxidants than açaí berries and are cheaper and more widely available.

Açaí berries don’t just have potential brain benefits, however. Might they also protect the lungs against harm induced by cigarette smoke? You may remember the study where the addition of açaí berries to cigarettes protected against emphysema—in smoking mice, that is. That’s not very helpful. There is a long list of impressive-looking benefits until you dig a little deeper. For example, I was excited to see a “[r]eduction of coronary disease risk due to the vasodilation effect” of açaí berries, but then I pulled the study and found they were talking about a vasodilator effect…in the mesenteric vascular bed of rats. There hadn’t been any studies on açaí berries and artery function in humans until a study published in 2016.

Researchers gave overweight men either a smoothie containing about two-thirds of a cup of frozen açaí pulp and half a banana or an artificially colored placebo smoothie containing the banana but no açaí. As you can see at 2:26 in my video, within two hours of consumption of their smoothie, the açaí group had a significant improvement in artery function that lasted for at least six hours, a one or two point bump that is clinically significant. In fact, those walking around with just one point higher tend to go on to suffer 13 percent fewer cardiovascular events like fatal heart attacks.

As I show at 2:52 in my video, you can get the same effect from wild blueberries, though: about a one-and-a-half-point bump in artery function two hours after blueberry consumption. This effect peaks then plateaus at about one and a half cups of blueberries, with two and a half cups and three and a half cups showing no further benefits.

What about cooked blueberries? As you can see at 3:12 in my video, if you baked the blueberries into a bun, like a blueberry muffin, you get the same dramatic improvement in artery function.

Cocoa can do it, too. As shown at 3:30 in my video, after having one tablespoon of cocoa, you gain about one point, and two tablespoons gives you a whopping four points or so, which is double what you get with açaí berries.

One and a quarter cups’ worth of multicolored grapes also give a nice boost in artery function, but enough to counter an “acute endothelial insult,” a sudden attack on the vulnerable inner layer of our arteries? Researchers gave participants a “McDonald’s sausage egg breakfast sandwich and two hash browns.” They weren’t messing around! As you can see at 3:56 in my video, without the grapes, artery function was cut nearly in half within an hour, and the arteries stayed stiffened and crippled three hours later. But when they ate that McMuffin with all those grapes, the harmful effect was blunted.

Eat a meal with hamburger meat, and artery function drops. But if you eat that same meal with some spices, including a teaspoon and a half of turmeric, artery function actually improves.

What about orange juice? Four cups a day of commercial orange juice from concentrate for four weeks showed no change in artery function. What about freshly squeezed orange juice? Still nothing. That’s one of the reasons berries, not citrus, are the healthiest fruits.

For a beverage that can improve your artery function, try green tea. Two cups of green tea gives you that same effect we saw with cocoa, gaining nearly four points within just 30 minutes. And, as you can see at 5:05 in my video, that same crazy effect is also seen with black tea, with twice as powerful an effect as the açaí berries.

So, why all the focus on just that one plant? Why açaí berries? Well, the real reason may be because the author owns a patent on an açaí-based dietary supplement.


How do the antioxidant effects of açaí berries compare to applesauce? See The Antioxidant Effects of Açaí vs. Apples.

What about the effects of other foods on artery function? Coronary artery disease is, after all, our leading cause of death for men and women. See:

What else can blueberries do? Check out:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

What White Blood Cell Count Should We Shoot for?

At the start of my video What Does a Low White Blood Cell Count Mean?, you can see what it looks like when you take a drop of blood, smear it between two pieces of glass, and view at it under a microscope: a whole bunch of little, round, red blood cells and a few big, white blood cells. Red blood cells carry oxygen, while white blood cells are our immune system’s foot soldiers. We may churn out 50 billion new white blood cells a day. In response to inflammation or infection, that number can shoot up to a 100 billion or more. In fact, pus is largely composed of: millions and millions of white blood cells.

Testing to find out how many white blood cells we have at any given time is one of the most common laboratory tests doctors order. It’s ordered it hundreds of millions of times a year. If, for example, you end up in the emergency room with abdominal pain, having a white blood cell count above about 10 billion per quart of blood may be a sign you have appendicitis. Most Americans fall between 4.5 and 10, but most Americans are unhealthy. Just because 4.5 to 10 is typical doesn’t mean it’s ideal. It’s like having a “normal” cholesterol level in a society where it’s normal to die of heart disease, our number-one killer. The average American is overweight, so if your weight is “normal,” that’s actually a bad thing.

In fact, having excess fat itself causes inflammation within the body, so it’s no surprise that those who are obese walk around with two billion more white cells per quart of blood. Given that, perhaps obese individuals should have their own “normal” values. As you can see at 2:06 in my video, if someone with a 47-inch waist walks into the ER with a white blood cell count of 12, 13, or even 14, they may not have appendicitis or an infection. That may just be their normal baseline level, given all the inflammation they have in their body from the excess fat. So, normal levels are not necessarily healthy levels.

It’s like smoking. As you can see at 2:31 in my video, if you test identical twins and one smokes but the other doesn’t, the smoker is going to end up with a significantly higher white cell count. In Japan, for example, as smoking rates have steadily dropped, so has the normal white count range. In fact, it’s dropped such that about 8 percent of men who have never smoked would now be flagged as having abnormally low white counts if you used a cut-off of 4. But, when that cut-off of 4 was set, most people were smoking. So, maybe 3 would be a better lower limit. The inflammation caused by smoking may actually be one of the reasons cigarettes increase the risk of heart attacks, strokes, and other inflammatory diseases. So, do people who have lower white counts have less heart disease, cancer, and overall mortality? Yes, yes, and yes. People with lower white blood cell counts live longer. Even within the normal range, every one point drop may be associated with a 20 percent drop in the risk of premature death.

As you can see at 3:39 in my video, there is an exponential increase in risk in men as white count goes up, even within the so-called normal range, and the same is found for women. The white blood cell count is a “stable, well-standardized, widely available and inexpensive measure of systemic inflammation.” In one study, half of the women around 85 years of age who had started out with white counts under 5.6 were still alive, whereas 80 percent of those who started out over 7 were dead, as you can see at 4:05 in my video—and white blood cell counts of 7, 8, 9, or even 10 would be considered normal. Being at the high end of the normal range may place one at three times the risk of dying from heart disease compared to being at the lower end.

The same link has been found for African-American men and women, found for those in middle age, found at age 75, found at age 85, and found even in our 20s and 30s: a 17 percent increase in coronary artery disease incidence for each single point higher.

As you can see at 5:00 in my video, the higher your white count, the worse your arterial function may be and the stiffer your arteries may be, so it’s no wonder white blood cell count is a useful predictor of high blood pressure and artery disease in your heart, brain, legs, and neck. Even diabetes? Yes, even diabetes, based on a compilation of 20 different studies. In fact, it may be associated with everything from fatty liver disease to having an enlarged prostate. And, having a higher white blood cell count is also associated with an increased risk of dying from cancer. So, what would the ideal range be? I cover that in my video What Is the Ideal White Blood Cell Count?.

A higher white blood cell count may be an important predictor for cardiovascular disease incidence and mortality, decline in lung function, cancer mortality, all-cause mortality, heart attacks, strokes, and premature death in general. This is no surprise, as the number of white blood cells we have circulating in our bloodstreams are a marker of systemic inflammation. Our bodies produce more white blood cells day to day in response to inflammatory insults.

We’ve known about this link between higher white counts and heart attacks since the 1970s, when we found that higher heart attack risk was associated with higher white blood cell counts, higher cholesterol levels, and higher blood pressures, as you can see at 0:53 in my video What Is the Ideal White Blood Cell Count?. This has been found in nearly every study done since then. There are decades of studies involving hundreds of thousands of patients showing dramatically higher mortality rates in those with higher white counts. But why? Why does white blood cell count predict mortality? It may be because it’s a marker of inflammation and oxidation in the body. In fact, it may even be a biomarker for how fast we are aging. It may be more than just an indicator of inflammation—it may also be an active player, contributing directly to disease via a variety of mechanisms, including the actual obstruction of blood flow.

The average diameter of a white blood cell is about seven and a half micrometers, whereas our tiniest vessels are only about five micrometers wide, so the white blood cell has to squish down into a sausage shape in order to squeeze through. When there’s inflammation present, these cells can get sticky. As you can see at 2:20 in my video, a white blood cell may plug up a vessel as it exits a small artery and tries to squeeze into a capillary, slowing down or even momentarily stopping blood flow. And, if it gets stuck there, it can end up releasing all of its internal weaponry, which is normally reserved for microbial invaders, and damage our blood vessels. This may be why in the days leading up to a stroke or heart attack, you may find a spike in the white cell count.

Whether white count is just a marker of inflammation or an active participant, it’s better to be on the low side. How can we reduce the level of inflammation in our body? Staying away from even second-hand smoke can help drop your white count about half of a point. Those who exercise also appear to have an advantage, but you don’t know if it’s cause and effect unless you put it to the test. In one study, two months of Zumba classes—just one or two hours a week—led to about a point and a half drop in white count. In fact, that may be one of the reasons exercise is so protective. But is that just because they lost weight?

Fitness and fatness both appear to play a role. More than half of obese persons with low fitness—51.5 percent—have white counts above 6.6, but those who are more fit or who have less fat are less likely to have counts that high, as you can see at 3:47 in my video. Of course, that could just be because exercisers and leaner individuals are eating healthier, less inflammatory diets. How do we know excess body fat itself increases inflammation, increases the white count? You’d have to find some way to get people to lose weight without changing their diet or exercise habit. How’s that possible? Liposuction. If you suck about a quart of fat out of people, you can significantly drop their white count by about a point. Perhaps this should get us to rethink the so-called normal reference range for white blood cell counts. Indeed, maybe we should revise it downward, like we’ve done for cholesterol and triglycerides.

Until now, we’ve based normal values on people who might be harboring significant background inflammatory disease. But, if we restrict it to those with normal C-reactive protein, another indicator of inflammation, then instead of “normal” being 4.5 to 10, perhaps we should revise it closer to 3 to 9.

Where do the healthiest populations fall, those not suffering from the ravages of chronic inflammatory diseases, like heart disease and common cancers? Populations eating diets centered around whole plant foods average about 5, whereas it was closer to 7 or 8 in the United States at the time. How do we know it isn’t just genetic? As you can see at 5:38 in my video, if you take those living on traditional rural African diets, who have white blood cell counts down around 4 or 5, and move them to Britain, they end up closer to 6, 7, or even 8. Ironically, the researchers thought this was a good thing, referring to the lower white counts on the “uncivilized” diet as neutropenic, meaning having too few white blood cells. They noted that during an infection or pregnancy, when more white cells are needed, the white count came right up to wherever was necessary. So, the bone marrow of those eating traditional plant-based diets had the capacity to create as many white cells as needed but “suffers from understimulation.”

As you can see at 6:26 in my video, similar findings were reported in Western plant eaters, with an apparent stepwise drop in white count as diets got more and more plant based, but could there be non-dietary factors, such as lower smoking rates, in those eating more healthfully? What we need is an interventional trial to put it to the test, and we got one: Just 21 days of removing meat, eggs, dairy, alcohol, and junk affected a significant drop in white count, even in people who started out down at 5.7.

What about patients with rheumatoid arthritis who started out even higher, up around 7? As you can see at 7:03 in my video, there was no change in the control group who didn’t change their diet, but there was a 1.5 point drop within one month on whole food plant-based nutrition. That’s a 20 percent drop. That’s more than the drop-in inflammation one might get quitting a 28-year pack-a-day smoking habit. The most extraordinary drop I’ve seen was in a study of 35 asthmatics. After four months of a whole food plant-based diet, their average white count dropped nearly 60 percent, from around 12 down to 5, though there was no control group nor enough patients to achieve statistical significance.

If white blood cell count is such a clear predictor of mortality and is so inexpensive, reliable, and available, why isn’t it used more often for diagnosis and prognosis? Maybe it’s a little too inexpensive. The industry seems more interested in fancy new risk factors it can bill for.

I touch on the health of the rural Africans I discussed in How Not to Die from Heart Disease.


For more on fighting inflammation, see:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

No Purveyor of Unhealthy Products Wants the Public to Know the Truth

In 2011, Denmark introduced the world’s first tax on saturated fat. “After only 15 months, however, the fat tax was abolished,” due to massive pressure from farming and food company interests. “Public health advocates are weak in tackling the issues of corporate power…A well-used approach for alcohol, tobacco, and, more recently, food-related corporate interests is to shift the focus away from health. This involves reframing a fat or soft drinks tax as an issue of consumer rights and a debate over the role of the state in ‘nannying’ or restricting people’s choices.” I discuss this in my video The Food Industry Wants the Public Confused About Nutrition.

“The ‘Nanny State’ is a term that is usually used in a pejorative way to discourage governments from introducing legislation or regulation that might undermine the power or actions of industry or individuals…Public health advocacy work is regularly undermined by the ‘Nanny State’ phrase.” But those complaining about the governmental manipulation of people’s choices hypocritically tend to be fine with corporations doing the same thing. One could argue that “public health is being undermined by the ‘Nanny Industry’…[that] uses fear of government regulation to maintain its own dominance, to maintain its profits and to do so at a significant financial and social cost to the community and to public health.”

The tobacco industry offers the classic example, touting “personal responsibility,” which has a certain philosophical appeal. As long as people understand the risks, they should be free to do whatever they want with their bodies. Now, some argue that risk-taking affects others, but if you have the right to put your own life at risk, shouldn’t you have the right to aggrieve your parents, widow your spouse, and orphan your children? Then, there’s the social cost argument. People’s bad decisions can cost the society as a whole, whose tax dollars may have to care for them. “The independent, individualist motorcyclist, helmetless and free on the open road, becomes the most dependent of individuals in the spinal injury ward.”

But, for the sake of argument, let’s forget these spillover effects, the so-called externalities. If someone understands the hazards, shouldn’t they be able to do whatever they want? Well, “first, it assumes individuals can access accurate and balanced information relevant to their decisions…but deliberate industry interference has often created situations where consumers have access only to incomplete and inaccurate information…For decades, tobacco companies successfully suppressed or undermined scientific evidence of smoking’s dangers and down played the public health concerns to which this information gave rise.” Don’t worry your little head, said the nanny companies. “Analyses of documents…have revealed decades of deception and manipulation by the tobacco industry, and confirmed deliberate targeting of…children.” Indeed, it has “marketed and sold [its] lethal products with zeal…and without regard for the human tragedy….”

“The tobacco industry’s deliberate strategy of challenging scientific evidence undermines smokers’ ability to understand the harms smoking poses” and, as such, undermines the whole concept that smoking is a fully informed choice. “Tobacco companies have denied smokers truthful information…yet held smokers [accountable] for incurring diseases that will cause half of them to die prematurely. In contexts such as these, government intervention is vital to protect consumers from predatory industries….”

Is the food industry any different? “The public is bombarded with information and it is hard to tell which is true, which is false and which is merely exaggerated. Foods are sold without clarity about the nutritional content or harmful effects.” Remember how the food industry spent a billion dollars making sure the easy-to-understand traffic-light labeling system on food, which you can see at 4:26 in my video, never saw the light of day and was replaced by indecipherable labeling? That’s ten times more money than the drug industry spends on lobbying in the United States. It’s in the food industry’s interest to have the public confused about nutrition.

How confused are we about nutrition? “Head Start teachers are responsible for providing nutrition education to over 1 million low-income children annually…” When 181 Head Start teachers were put to the test, only about 4 out of the 181 answered at least four of the five nutrition knowledge questions correctly. Most, for example, could not correctly answer the question, “What has the most calories: protein, carbohydrate, or fat?” Not a single teacher could answer all five nutrition questions correctly. While they valued nutrition education, 54 percent “agreed that it was hard to know which nutrition information to believe,” and the food industry wants to keep it that way. A quarter of the teachers did not consume any fruits or vegetables the previous day, though half did have french fries and soda, and a quarter consumed fried meat the day before. Not surprisingly, 55 percent of the teachers were not just overweight but obese.

When even the teachers are confused, something must be done. No purveyor of unhealthy products wants the public to know the truth. “An interesting example comes from the US ‘Fairness Doctrine’ and the tobacco advertising experience of the 1960s. Before tobacco advertising was banned from television in the US, a court ruling in 1967 required that tobacco companies funded one health ad about smoking for every four tobacco TV advertisements they placed. Rather than face this corrective advertising, the tobacco industry took their own advertising off television.” They knew they couldn’t compete with the truth. Just “the threat of corrective advertising even on a one-to-four basis was sufficient to make the tobacco companies withdraw their own advertising.” They needed to keep the public in the dark.

The trans fat story is an excellent example of this. For more on that, see my videos Controversy Over the Trans Fat Ban and Banning Trans Fat in Processed Foods but Not Animal Fat.

Isn’t the Fairness Doctrine example amazing? Just goes to show how powerful the truth can be. If you want to support my efforts to spread evidence-based nutrition, you can donate to our 501c3 nonprofit here. You may also want to support Balanced, an ally organization NutritionFacts.org helped launch to put this evidence into practice.


More tobacco industry parallels can be found in Big Food Using the Tobacco Industry Playbook, American Medical Association Complicity with Big Tobacco, and How Smoking in 1959 Is Like Eating in 2016.

Want to know more about that saturated fat tax idea? See Would Taxing Unhealthy Foods Improve Public Health?.

Also check:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations: