How to Lower Your Sodium Intake

Reduction of salt consumption by just 15 percent could save the lives of millions. If we cut our salt intake by half a teaspoon a day, which is achievable simply by avoiding salty foods and not adding salt to our food, we might prevent 22 percent of stroke deaths and 16 percent of fatal heart attacks—potentially helping more than if we were able to successfully treat people with blood pressure pills. As I discuss in my video Salt of the Earth: Sodium and Plant-Based Diets, an intervention in our kitchens may be more powerful than interventions in our pharmacies. One little dietary tweak could help more than billions of dollars worth of drugs.

What would that mean in the United States? Tens of thousands of lives saved every year. On a public-health scale, this simple step “could be as beneficial as interventions aimed at smoking cessation, weight reduction, and the use of drug therapy for people with hypertension or hypercholesterolemia,” that is, giving people medications to lower blood pressure and cholesterol. And, that’s not even getting people down to the target. 

A study I profile in my video shows 3.8 grams per day as the recommended upper limit of salt intake for African-Americans, those with hypertension, and adults over 40. For all other adults the maximum is 5.8 daily grams, an upper limit that is exceeded by most Americans over the age of 3. Processed foods have so much added salt that even if we avoid the saltiest foods and don’t add our own salt, salt levels would go down yet still exceed the recommended upper limit. Even that change, however, might save up to nearly a hundred thousand American lives every year.

“Given that approximately 75% of dietary salt comes from processed foods, the individual approach is probably impractical.” So what is our best course of action? We need to get food companies to stop killing so many people. The good news is “several U.S. manufacturers are reducing the salt content of certain foods,” but the bad news is that “other manufacturers are increasing the salt levels in their products. For example, the addition of salt to poultry, meats, and fish appears to be occurring on a massive scale.”

The number-one source of sodium for kids and teens is pizza and, for adults over 51, bread. Between the ages of 20 and 50, however, the greatest contribution of sodium to the diet is not canned soups, pretzels, or potato chips, but chicken, due to all the salt and other additives that are injected into the meat.

This is one of the reasons that, in general, animal foods contain higher amounts of sodium than plant foods. Given the sources of sodium, complying with recommendations for salt reduction would in part “require large deviations from current eating behaviors.” More specifically, we’re talking about a sharp increase in vegetables, fruits, beans, and whole grains, and lower intakes of meats and refined grain products. Indeed, “[a]s might be expected, reducing the allowed amount of sodium led to a precipitous drop” in meat consumption for men and women of all ages. It’s no wonder why there’s so much industry pressure to confuse people about sodium.

The U.S. Dietary Guidelines recommend getting under 2,300 milligrams of sodium a day, while the American Heart Association recommends no more than 1,500 mg/day. How do vegetarians do compared with nonvegetarians? Well, nonvegetarians get nearly 3,500 mg/day, the equivalent of about a teaspoon and a half of table salt. Vegetarians did better, but, at around 3,000 mg/day, came in at double the American Heart Association limit.

In Europe, it looks like vegetarians do even better, slipping under the U.S. Dietary Guidelines’ 2,300 mg cut-off, but it appears the only dietary group that nails the American Heart Association recommendation are vegans—that is, those eating the most plant-based of diets.


This is part of my extended series on sodium, which includes:

If you’re already cutting out processed foods and still not reaching your blood pressure goals, see:

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Why We Should Cut Down on Salt Independently of Blood Pressure

If you put people on a low-salt diet, meaning only getting twice as much sodium as they need, as opposed to a usual salt diet where they’re getting five times more, you get a significant improvement in artery function. Lower salt begets better arterial function, suggesting heart-protective effects beyond just blood pressure reduction. Now, this was after dropping people’s salt intake by about a teaspoon a day for two weeks. What if you only dropped salt intake by a half teaspoon or so a day? You still get a significant improvement in artery function, and it happens within just two days of reducing one’s salt intake—or, even after a single meal. A high-salt meal, which is to say just a “typical amount of salt consumed in a commonly eaten meal, can significantly suppress [artery function] within 30 [minutes].” In my video Sodium and Arterial Function: A-Salting Our Endothelium, I show what happens 30, 60, 90, and 120 minutes after consuming a meal with just a pinch of salt in it versus eating the same meal, but made with a quarter teaspoon of salt rather than a pinch: a significant suppression of arterial function. Now, is this in addition to the spike in blood pressure from salt or because of the spike in blood pressure?

If you take people with normal blood pressure and give them a bowl of soup containing the amount of salt a regular meal might contain, their blood pressure goes up over the next three hours compared to the same soup with no added salt. Now, this doesn’t happen to everyone; this is just the average response. Some people are resistant to the effects of salt on their blood pressure. So what if you repeated the artery function experiment on them? You get a paper entitled (*spoiler alert*): “High dietary sodium intake impairs endothelium-dependent dilation in healthy salt-resistant humans.” Indeed, even in people whose blood pressure is unresponsive to salt intake, they still suffer significant suppression of their artery function. So, independent of any effects on blood pressure, salt hurts our arteries, and that harm begins within minutes of consumption for our major arteries and even our tiny blood vessels.

Using something called laser Doppler flowmetry, you can measure blood flow in the tiny vessels in our skin. In the video, you can see the measurement of blood flow at baseline. Now, to get the blood vessels to open up, they warmed the skin. The reason we may turn pink when we get into a hot bath is that the blood vessels in our skin are opening up, and that’s what happened: a big increase in blood flow with the warming. That was on the low-salt diet, however. A high-salt diet starts out the same, but after the same warming, there’s significantly less blood flow. The arteries just don’t seem to open up as well on a high-salt diet, unless you inject vitamin C into the skin. That seems to reverse the salt-induced suppression of blood vessel function. So if an antioxidant reverses the salt effect, then the way salt may be damaging our artery function is through oxidative stress, the formation of free radicals in our blood stream. But, how?

There’s an enzyme in our body that can detoxify a million free radicals per second (!), 24 hours a day, 7 days a week. But, compared to a low-salt diet, if we consume a normal-salt diet, we suppress the activity of this detoxifying powerhouse of an enzyme. That may help explain why our artery function is much lower on salt. With our antioxidant enzymes crippled by the salt, all the excess free radicals may be crippling our arteries. Mop up those extra free radicals by infusing vitamin C into the bloodstream, however, and artery function returns to normal. In contrast, on a low-salt diet, if you drip vitamin C into people’s veins, nothing happens because our antioxidant enzymes are already taking care of business and haven’t been shackled by the sodium of a normal-salt diet.

Whereas potassium, concentrated in fruits and vegetables, softens the cells that line our arteries and increases the release of nitric oxide that allows our arteries to relax, sodium in our blood stiffens the artery lining within minutes and reduces nitric oxide release. The more salt, the less nitric oxide is produced. Consume one salty meal, and not only does our blood pressure go up, but our arteries literally stiffen. That’s why we could figure out four thousand years ago that too much salt was bad for us. Maybe we don’t need a double-blind trial. Maybe we don’t need to follow people around for a decade. We may just have to feed someone a bag of potato chips and take their pulse.


My video Sodium and Arterial Function: A-Salting Our Endothelium is part of an extended video series on sodium, trying to set the record straight on the “controversy” manufactured by the processed food industries. Check out the other installments:

Other salt-related videos of interest include:

I touched on potassium in Preventing Strokes with Diet and Lowering our Sodium-to-Potassium Ratio to Reduce Stroke Risk, but I’m looking forward to doing a deep dive into the mineral when I get a chance.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

We Have Specific Fruit and Vegetable Receptors

According to a recent survey, the number of Americans adults who say they are eating ‘pretty much whatever they want’ is at an all-time high,” which unfortunately includes “too few fruits and vegetables,” as well as “too little variety.” Half of all fruit servings are taken up by just six foods: orange juice, bananas, apple juice, apples, grapes, and watermelons. Only five foods—iceberg lettuce, frozen potatoes, fresh potatoes, potato chips, and canned tomatoes—make up half of all vegetable servings. We’re not only eating too few fruits and veggies. We’re also missing out on the healthiest fruits, which are berries, and the healthiest vegetables, which are dark green leafies. The fruit and vegetable palette for our palate is sadly lacking.

Why does dietary diversity matter? As I discuss in my video Specific Receptors for Specific Fruits and Vegetables, different foods may affect different problems. Cabbage, cauliflower, broccoli, and Brussels sprouts are associated with lower risk of colon cancer in the middle and right side of our body, whereas risk of colon cancer further down on the left side of our body appears to be better lowered by carrots, pumpkins, and apples. So, “different F/V [fruits and vegetables] may confer different risks for cancer” of different parts of even the same organ.

Variety is the spice of life—and may prolong it. “Independent from quantity of consumption, variety in fruit and vegetable consumption may decrease lung cancer risk,” meaning if two people eat the same number of fruits and vegetables, the one eating a greater variety may be at lower risk.

It’s not just cancer risk. In a study of thousands of men and women, a greater quantity of vegetables and a greater variety may independently be beneficial for reducing the risk of type 2 diabetes. Even after removing the effects of quantity, “each different additional two item per week increase in variety of F&V [fruit and vegetable] intake was associated with an 8% reduction in the incidence of T2D [type 2 diabetes].” Why? Well, it “may be attributable to individual or combined effects of the many different bioactive phytochemicals contained in F&V. Thus, consumption of a wide variety of F&V will increase the likelihood of consuming” more of them.

“All the vegetables may offer protection…against chronic diseases,” but “[e]ach vegetable group contains a unique combination and amount of these [phytonutrients], which distinguishes them from other groups and vegetables within their own group.” Indeed, because “each vegetable contains a unique combination of phytonutriceuticals (vitamins, minerals, dietary fiber and phytochemicals), a great diversity of vegetables should be eaten…to get all the health benefits.”

Does it matter, though, if we get alpha-carotene or beta-carotene? Isn’t an antioxidant an antioxidant? No. “It has been shown that phytochemicals bind to specific receptors and proteins” in our bodies. For example, our body appears to have a green tea receptor—that is, a receptor for EGCG, which is a key component of green tea. There are binding proteins for the phytonutrients in grapes, onions, and capers. In my video The Broccoli Receptor: Our First Line of Defense, I talk about the broccoli receptor, for instance. Recently, a cell surface receptor was identified for a nutrient concentrated in apple peels. Importantly, these target proteins are considered indispensable for these plants foods to do what they do, but they can only do it if we actually eat them.

Just like it’s better to eat a whole orange than simply take a vitamin C pill, because, otherwise, we’d miss out on all the other wonderful things in oranges that aren’t in the pill, by just eating an apple, we’re also missing out on all the wonderful things in oranges. When it comes to the unique phytonutrient profile of each fruit and vegetable, it truly is like comparing apples to oranges.


This is one of the reasons I developed my Daily Dozen checklist of foods to incorporate into one’s routine. Download the free iPhone and Android apps, and be sure to watch my video Dr. Greger’s Daily Dozen Checklist.

I discuss how produce variety—not just quality and quantity—may be important in Apples and Oranges: Dietary Diversity and Garden Variety Anti-Inflammation, so I hope you’ll check them out. You can also learn more about why combining certain foods together may be more beneficial than eating them separately in Food Synergy.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations: