The Role of Pesticides in Parkinson’s Disease

In the original description of Parkinson’s disease by none other than Dr. James Parkinson himself, he described a characteristic feature of the disease: constipation, which may precede the diagnosis by many years. In fact, bowel movement frequency may be predictive. Men with less than one bowel movement a day were four times more like likely to develop Parkinson’s an average of 12 years later. This could be simply a really early symptom of the disease tied to decreased water intake, however. Many Parkinson’s patients report never really feeling very thirsty, and perhaps that led to the constipation. “Alternately, one may speculate that constipation also increases the risk of Parkinson’s disease as constipation results in a longer stay of the feces in the bowel and thus more absorption of neurotoxicants,” neurotoxins from the diet.

Two studies suggest an association between constipation and Parkinson’s, but, at the same time, 38 studies link the disease to pesticide exposure and by now more than 100 studies link pesticides to an increased risk of up to 80 percent.

Many of these studies are on occupational exposure, like that experienced by farmworkers, who may reduce their risk of Parkinson’s by wearing gloves and washing their clothes, but Parkinson’s has also been linked to ambient exposure. In the United States where approximately a billion pounds of pesticides are applied annually, just living or working in high-spray areas may increase Parkinson’s risk. It’s the same with using pesticides in the home. I didn’t realize how common household pesticide use was, and a study out of UCLA suggests it might not be such a good idea. 

Pesticides may cause DNA mutations that increase susceptibility for Parkinson’s or play a more direct role. Many neurodegenerative diseases appear to be caused by the buildup of misfolded proteins. In Alzheimer’s, it’s the protein amyloid beta; in Creutzfeldt-Jakob and mad cow disease, it’s prions; in Huntington’s, it’s a different protein; and in Parkinson’s disease, it’s a protein called alpha synuclein. A variety of pesticides—8 out of the 12 tested by researchers—were able to trigger synuclein accumulation in human nerve cells, at least in a petri dish, though the study has since been retracted so it’s unclear what the data actually showed.

The buildup of synuclein may play a role in killing off specialized nerve cells in the brain, 70 percent of which may be gone by the time the first symptoms arise. Pesticides are so good at killing these neurons that researchers use them to try to recreate Parkinson’s disease in animals. Is there any way to stop the process? As of this writing, there aren’t yet any drugs that can prevent this protein aggregation. What about flavonoid phytonutrients, natural compounds found in certain fruits and vegetables? Flavonoids can cross the blood-brain barrier and may have neuroprotective effects, so researchers tested 48 different plant compounds to see if any could stop the clumping of synuclein proteins into the little fibers that clog up the cell. And, indeed, they found a variety of flavonoids that can not only inhibit the spider web-like formation of synuclein fibers, but some could even break them up. It turns out flavonoids may actually bind to synuclein proteins and stabilize them.

In my video Berries vs. Pesticides in Parkinson’s Disease, you can see healthy nerve cells and the neurites, the arms they use to communicate to one another. After exposure to a pesticide, however, you can see how the cell is damaged and the arms are retracted. But, if you first incubate the nerve cells with a blueberry extract, the nerve cell appears better able to withstand the pesticide effects. So, this implies that flavonoids in our diet may be combating Parkinson’s disease as we speak, and healthy diets may be effective in preventing and even treating the disorder. However, these were all petri dish experiments in a laboratory. Is there any evidence that people eating berries are protected from Parkinson’s?

A study published quite a long time ago suggested the consumption of blueberries and strawberries was protective, but it was a tiny study and its results were not statistically significant. Nevertheless, that was the best we had…until now. In a more recent study, those eating a variety of phytonutrients were less likely to develop Parkinson’s disease. Specifically, higher intake of berries was associated with significantly lower risk. The accompanying editorial, “An Apple a Day to Prevent Parkinson Disease,” concluded that more research is necessary, but, until then, “an apple a day might be a good idea.” Of course, that’s coming from a man. Apples appeared protective against Parkinson’s for men, but not women. However, everyone appeared to benefit from the berries.

We may not want to have our berries with cream, though, as milk may be contaminated with the same kind of neurotoxic pesticide residues found in the brains of Parkinson’s disease victims.

I’ve produced other videos on Parkinson’s disease, including: 

Learn about other neurological muscular disorders, including essential tremor and ALS:

The same reason Parkinson’s may be related to constipation may also explain the breast cancer connection. For more on this, see my video Breast Cancer and Constipation.

What else can berries do?

But what about all the sugar in fruit? See my videos If Fructose Is Bad, What About Fruit? and How Much Fruit Is Too Much?.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Comparing Pollutant Levels Between Different Diets

The results of the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study were published recently. This study of a California birth cohort investigated the relationship between exposure to flame retardant chemical pollutants in pregnancy and childhood, and subsequent neurobehavioral development. Why California? Because California children’s exposures to these endocrine disruptors and neurotoxins are among the highest in the world.

What did they find? The researchers concluded that both prenatal and childhood exposures to these chemicals “were associated with poorer attention, fine motor coordination, and cognition” (particularly verbal comprehension) by the time the children reached school age. “This study, the largest to date, contributes to growing evidence suggesting that PBDEs [polybrominated diphenyl ethers, flame retardant chemicals] have adverse impacts on child neurobehavioral development.” The effects may extend into adolescence, again affecting motor function as well as thyroid gland function. The effect on our thyroid glands may even extend into adulthood.

These chemicals get into moms, then into the amniotic fluid, and then into the breast milk. The more that’s in the milk, the worse the infants’ mental development may be. Breast milk is still best, but how did these women get exposed in the first place?

The question has been: Are we exposed mostly from diet or dust? Researchers in Boston collected breast milk samples from 46 first-time moms, vacuumed up samples of dust from their homes, and questioned them about their diets. The researchers found that both were likely to blame. Diet-wise, a number of animal products were implicated. This is consistent with what’s been found worldwide. For example, in Europe, these flame retardant chemical pollutants are found mostly in meat, including fish, and other animal products. It’s similar to what we see with dioxins—they are mostly found in fish and other fatty foods, with a plant-based diet offering the lowest exposure.

If that’s the case, do vegetarians have lower levels of flame retardant chemical pollutants circulating in their bloodstreams? Yes. Vegetarians may have about 25% lower levels. Poultry appears to be the largest contributor of PBDEs. USDA researchers compared the levels in different meats, and the highest levels of these pollutants were found in chicken and turkey, with less in pork and even less in beef. California poultry had the highest, consistent with strict furniture flammability codes. But it’s not like chickens are pecking at the sofa. Chickens and turkeys may be exposed indirectly through the application of sewer sludge to fields where feed crops are raised, contamination of water supplies, the use of flame-retarded materials in poultry housing, or the inadvertent incorporation of fire-retardant material into the birds’ bedding or feed ingredients.

Fish have been shown to have the highest levels overall, but Americans don’t eat a lot of fish so they don’t contribute as much to the total body burden in the United States. Researchers have compared the level of PBDEs found in meat-eaters and vegetarians. The amount found in the bloodstream of vegetarians is noticeably lower, as you can see in my video Flame Retardant Pollutants and Child Development. Just to give you a sense of the contribution of chicken, higher than average poultry eaters have higher levels than omnivores as a whole, and lower than average poultry eaters have levels lower than omnivores.

What are the PBDE levels in vegans? We know the intake of many other classes of pollutants is almost exclusively from the ingestion of animal fats in the diet. What if we take them all out of the diet? It works for dioxins. Vegan dioxin levels appear markedly lower than the general population. What about for the flame retardant chemicals? Vegans have levels lower than vegetarians, with those who’ve been vegan around 20 years having even lower concentrations. This tendency for chemical levels to decline the longer one eats plant-based suggests that food of animal origin contributes substantially. But note that levels never get down to zero, so diet is not the only source.

The USDA researchers note that there are currently no regulatory limits on the amount of flame retardant chemical contamination in U.S. foods, “but reducing the levels of unnecessary, persistent, toxic compounds in our diet is certainly desirable.”

I’ve previously talked about this class of chemicals in Food Sources of Flame Retardant Chemicals. The same foods seem to accumulate a variety of pollutants:

Many of these chemicals have hormone- or endocrine-disrupting effects. See, for example:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations: