Garlic Powder to Lower Lead Levels

There are so-called chelation drugs that can be taken for acute, life-threatening lead poisoning—for instance if your two-year-old swallowed one of the little lead weights her grandma was using while sewing curtains and the doctor happened to miss it on x-ray, so it stayed lodged inside her until she died with a blood lead level of 283 mcg/dcl, a case I discuss in my video Best Foods for Lead Poisoning: Chlorella, Cilantro, Tomatoes, Moringa?.

However, for lower grade, chronic lead poisoning, such as at levels under 45 mg/dL, there were no clear guidance as to whether these chelation drugs were effective. When they were put to the test, the drugs failed to bring down lead levels long term. Even when they worked initially, in dose after dose, the lead apparently continued to seep from the patients’ bones, and, by the end of the year, they ended up with the same lead levels as the sugar pill placebo group, as you can see at 0:50 in my video. It was no surprise, then, that even though blood lead levels dipped at the beginning, researchers found no improvements in cognitive function or development.

Since much of lead poisoning is preventable and the drugs don’t seem to work in most cases, that just underscores the need “to protect children from exposure to lead in the first place.” Despite the medical profession’s “best intentions to do something to help these kids…drug therapy is not the answer.” Yes, we need to redouble efforts to prevent lead poisoning in the first place, but what can we do for the kids who’ve already been exposed?

The currently approved method, these chelating drugs that bind and remove lead from our tissues, “lack[s]…safety and efficacy when conventional chelating agents are used.” So, what about dietary approaches? Plants produce phytochelatins. All higher plants possess the capacity to synthesize compounds that bind up heavy metals to protect themselves from the harmful effects, so what if we ate the plants? “Unlike other forms of treatment (e.g., pharmacotherapy with drugs), nutritional strategies carry the promise of a natural form of therapy that would presumably be cheap and with few to no side effects.” Yes, but would it work when the drugs didn’t?

We had learned that a meal could considerably cut down on lead absorption, but “the particular components of food intake that so dramatically reduce lead absorption” were uncertain at the time. Although the calcium content of the meal appeared to be part of it, milk didn’t seem to help and even made things worse. What about calcium supplements? Some assert that calcium supplements may help in reducing lead absorption in children, but “recommendations…must be based on evidence rather than conviction.” What’s more, those assertions are based in part on studies on rodents, and differences in calcium absorption and balance between rats and humans make extrapolation tricky. What you have to do is put it to the test. Researchers found that even an extra whopping 1,800 mg of calcium per day had no effect on blood lead levels. Therefore, the evidence doesn’t support conclusions that calcium supplements help.

What about whole foods? Reviews of dietary strategies to treat lead toxicity say to eat lots of tomatoes, berries, onions, garlic, and grapes, as they are natural antagonists to lead toxicity and therefore should be consumed on a regular basis. Remember those phytochelatins? Perhaps eating plants might help detoxify the lead in our own bodies or the bodies of those we eat.

These natural phytochelatin compounds work so well that we can use them to clean up pollution. For example, the green algae chlorella can suck up lead and hold onto it, so what if we ate it? If it can clean up polluted bodies of water, might it clean up our own polluted bodies? We don’t know, because we only have studies on mice, not men and women.

So, when you hear how chlorella detoxifies, they’re talking about the detoxification of rat testicles. Yes, a little sprinkle of chlorella might help your pet rat, or perhaps you could give them some black cumin seeds or give them a sprig of cilantro, but when you hear how cilantro detoxifies against heavy metals, I presume you don’t expect the researchers to be talking about studies in rodents. If we’re interested in science protecting our children, not just their pets, we’re out of luck.

The same is true with moringa, tomatoes, flaxseed oil, and sesame seed oil, as well as black grapes, and black, white, green, and red tea. There are simply no human studies to guide us.

Dietary strategies for the treatment of lead toxicity are often based on rodent studies, but, for tofu, at least, there was a population study of people that showed lower lead levels in men and women who ate more tofu. The researchers controlled for a whole bunch of factors, so it’s not as if tofu lovers were protected just because they smoked less or ate less meat, but you can’t control for everything.

Ideally, we’d have a randomized, placebo-controlled study. Researchers would take a group of people exposed to lead, split them into two groups, with half given food and the other half given some kind of identical placebo food, and see what happens. It’s easy to do this with drugs because you just use look-alike sugar pills as placebos so people don’t know which group they’re in, but how do you make placebo food? One way to do disguised food interventions is to use foods that are so potent they can be stuffed into a pill—like garlic. There had been various studies measuring the effects of garlic in rats and looking at garlic as a potential antidote for lead intoxication distributed among different mouse organs, but who eats mouse organs? One animal study did have some direct human relevance, though, looking at the effect of garlic on lead content in chicken tissues. The purpose was to “explore the possible use of garlic to clean up lead contents in chickens which”—like all of us on planet Earth—“had been exposed to lead pollution and consequently help to minimize the hazard” of lead-polluted chicken meat.

And…it worked! As you can see at 1:59 in my video Best Food for Lead Poisoning: Garlic, feeding garlic to chickens reduced lead levels in the “edible mass of chicken” by up to 75 percent or more. Because we live in a polluted world, even if you don’t give the chickens lead and raise them on distilled water, they still end up with some lead in their meat and giblets. But, if you actively feed them lead for a week, the levels get really high. When you give them the same amount of lead with a little garlic added, however, much less lead accumulates in their bodies.

What’s even more astonishing is that when researchers gave them the same amount of lead—but this time waited a week before giving them the garlic—it worked even better. “The value of garlic in reducing lead concentrations…was more pronounced when garlic was given as a post-treatment following the cessation of lead administration”—that is, after the lead was stopped and had already built up in their tissues. We used to think that “the beneficial effect of garlic against lead toxicity was primarily due to a reaction between lead and sulfur compounds in garlic” that would glom on to lead in the intestinal tract and flush it out of the body. But, what the study showed is that garlic appears to contain compounds that can actually pull lead not only out of the intestinal contents, but also out of the tissues of the body. So, the “results indicate that garlic contain chelating compounds capable of enhancing elimination of lead,” and “garlic feeding can be exploited to safeguard human consumers by minimizing lead concentrations in meat….”

If garlic is so effective at pulling lead out of chickens’ bodies, why not more directly exploit “garlic feeding” by eating it ourselves? Well, there had never been a study on the ability of garlic to help lead-exposed humans until…2012? (Actually, I’m embarrassed to say I missed it when the study was first published. That was back when I was just getting up and running. Now that we have staff and a whole research team, hopefully important studies like this won’t slip through the cracks in the future.)

The study was a head-to-head comparison of the therapeutic effects of garlic versus a chelation therapy drug called D-penicillamine. One hundred and seventeen workers exposed to lead in the car battery industry were randomly assigned into one of two groups and, three times a day for one month, either got the drug or an eighth of a teaspoon of garlic powder compressed into a tablet, which is about the equivalent of two cloves of fresh garlic a day. As expected, the chelation drug reduced blood lead levels by about 20 percent—but so did the garlic. The garlic worked just as well as the drug and, of course, had fewer side effects. “Thus, garlic seems safer clinically and as effective,” but saying something is as effective as chelation therapy isn’t saying much. Remember how chelation drugs can lower blood levels in chronic lead poisoning, but they don’t actually improve neurological function?

Well, after treatment with garlic, significant clinical improvements were seen, including less irritability, fewer headaches, and improvements in reflexes and blood pressure, but these improvements were not seen in the drug group. They weren’t seen after treatment with the chelation therapy drug. So, garlic was safer and more effective. “Therefore, garlic can be recommended for the treatment of mild-to-moderate lead poisoning.

 There are also some human studieson vitamin C. Check out Can Vitamin C Help with Lead Poisoning?.

For even more lead videos, see:

To learn more about chlorella, see:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

What Explains the Egg-Cancer Connection

The reason egg consumption is associated with elevated cancer risk may be the TMAO, considered the “smoking gun” of microbiome-disease interactions.

“We are walking communities comprised not only of a Homo sapiens host, but also of trillions of symbiotic commensal microorganisms within the gut and on every other surface of our bodies.” There are more bacterial cells in our gut than there are human cells in our entire body. In fact, only about 10 percent of the DNA in our body is human. The rest is in our microbiome, the microbes with whom we share with the “walking community” we call our body. What do they do?

Our gut bacteria microbiota “serve as a filter for our largest environmental exposure—what we eat”—and, “technically speaking, food is a foreign object that we take into our bodies” by the pound every day. The “microbial community within each of us significantly influences how we experience a meal…Hence, our metabolism and absorption of food occurs through” this filter of bacteria.

However, as you can see at 1:22 in my video How Our Gut Bacteria Can Use Eggs to Accelerate Cancer, if we eat a lot of meat, including poultry and fish, milk, cheese, and eggs, we can foster the growth of bacteria that convert the choline and carnitine in those foods into trimethylamine (TMA), which can be oxidized into TMAO and wreak havoc on our arteries, increasing our risk of heart attack, stroke, and death.

We’ve known about this “troublesome” transformation from choline into trimethylamine for more than 40 years, but that was way before we learned about the heart disease connection. Why were researchers concerned back then? Because these methylamines might form nitrosamines, which have “marked carcinogenic activity”—cancer-causing activity. So where is choline found in our diet? Mostly from meat, eggs, dairy, and refined grains. The link between meat and cancer probably wouldn’t surprise anyone. In fact, just due to the industrial pollutants, like PCBs, children probably shouldn’t eat more than about five servings a month of meats like beef, pork, or chicken combined. But, what about cancer and eggs?

Studies going back to the 1970s hinted at a correlation between eggs and colon cancer, as you can see at 2:45 in my video. That was based just on so-called ecological data, though, showing that countries eating more eggs tended to have higher cancer rates, but that could be due to a million factors. It needed to be put to the test.

This testing started in the 80s, and, by the 1990s, 15 studies had been published, of which 10 suggested “a direct association” between egg consumption and colorectal cancer, “whereas five found no association.” By 2014, dozens more studies had been published, confirming that eggs may indeed be playing a role in the development of colon cancer, though no relationship was discovered between egg consumption and the development of precancerous polyps, which “suggested that egg consumption might be involved in the promotional” stage of cancer growth—accelerating cancer growth—rather than initiating the cancer in the first place.

This brings us to 2015. Perhaps it’s the TMAO made from the choline in meat and eggs that’s promoting cancer growth. Indeed, in the Women’s Health Initiative study, women with the highest TMAO levels in their blood had approximately three times greater risk of rectal cancer, suggesting that TMAO levels “may serve as a potential predictor of increased colorectal cancer risk.”

As you can see at 4:17 in my video, though there may be more evidence for elevated breast cancer risk with egg consumption than prostate cancer risk, the only other study to date on TMAO and cancer looked at prostate cancer and did indeed find a higher risk.

“Diet has long been considered a primary factor in health; however, with the microbiome revolution of the past decade, we have begun to understand how diet can” affect the back and forth between us and the rest of us inside, and the whole TMAO story is “a smoking gun” in gut bacteria-disease interactions.

Since choline and carnitine are the primary sources of TMAO production, the logical intervention strategy might be to reduce meat, dairy, and egg consumption. And, if we eat plant-based for long enough, we can actually change our gut microbial communities such that we may not be able to make TMAO even if we try.

“The theory of ‘you are what you eat’ finally is supported by scientific evidence.” We may not have to eat healthy for long, though. Soon, Big Pharma hopes, “we may yet ‘drug the microbiome’…as a way of promoting cardiovascular health.”

What did the egg industry do in response to this information? Distort the scientific record. See my video Egg Industry Response to Choline and TMAO.

This is not the first time the egg industry has been caught in the act. See, for example:

For background on TMAO see my original coverage in Carnitine, Choline, Cancer, and Cholesterol: The TMAO Connection and then find out How to Reduce Your TMAO Levels. Also, see: Flashback Friday: How to Reduce Your TMAO Levels.

This is all part of the microbiome revolution in medicine, the underappreciated role our gut flora play in our health. For more, see: 

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

How to Lower Your Sodium-to-Potassium Ratio

The potassium content in greens is one of two ways they can improve artery function within minutes of consumption.

More than a thousand years ago, for the treatment of hypertension, an ancient Persian medical text advised lifestyle interventions, such as avoiding meat and pastries, and recommended eating spinach. A thousand years later, researchers discovered that a single meal containing spinach could indeed reduce blood pressure, thanks to its nitrate content. All green leafy vegetables are packed with nitrate, which our body can use to create nitric oxide that improves the flexibility and function of our arteries. This may be why eating our greens may be one of the most powerful things we can do to reduce our chronic disease risk.

As you can see at 0:54 in my video Lowering Our Sodium-to-Potassium Ratio to Reduce Stroke Risk, just switching from low-nitrate vegetables to high-nitrate vegetables for a week can lower blood pressure by about 4 points, and the higher the blood pressure people started out with, the greater benefit they got. Four points might not sound like a lot, but even a 2-point drop in blood pressure could prevent more than 10,000 fatal strokes every year in the United States.

Potassium-rich foods may also act via a similar mechanism. If we get even just the minimum recommended daily intake of potassium, we might prevent 150,000 strokes every year. Why? Potassium appears to increase the release of nitric oxide. One week of eating two bananas and a large baked potato every day significantly improved arterial function. Even a single high-potassium meal, containing the equivalent of two to three bananas’ worth of potassium, can improve the function of our arteries, whereas a high-sodium meal—that is, a meal with the amount of salt most people eat—can impair arterial function within 30 minutes. While potassium increases nitric oxide release, sodium reduces nitric oxide release. So, the health of our arteries may be determined by our sodium-to-potassium ratio.

As you can see at 2:30 in my video, after two bacon slices’ worth of sodium, our arteries take a significant hit within 30 minutes. However, if you add three bananas’ worth of potassium, you can counteract the effects of the sodium. As I show at 2:48 in my video, when we evolved, we were eating ten times more potassium than sodium. Now, the ratio is reversed, as we consume more sodium than potassium. These kinds of studies “provide additional evidence that increases in dietary potassium should be encouraged,” but what does that mean? We should eat more beans, sweet potatoes, and leafy greens, the latter of which is like giving you a double whammy, as they are high in potassium and nitrates. The recommendation from a thousand years ago to eat spinach is pretty impressive, though bloodletting and abstaining from sex were also encouraged, so we should probably take ancient wisdom with a grain of salt—but our meals should be added-salt free.

Why might abstaining from sex not be the best idea for cardiovascular health? Because the opposite may actually be true. See my video Do Men Who Have More Sex Live Longer?.

What else can we do about stroke risk? Check out:

For more on potassium, see in Potassium and Autoimmune Disease and 98% of American Diets Potassium-Deficient.

Interested in learning more about the dangers of sodium? See:

Sodium isn’t just bad for our arteries. Check out How to Treat Asthma with a Low-Salt Diet and Sodium and Autoimmune Disease: Rubbing Salt in the Wound?.

I further explore the wonders of nitrate-rich vegetables in:

Sweet potatoes are an excellent high-potassium, low-sodium choice, but what’s the best way to prepare them? Check out The Best Way to Cook Sweet Potatoes.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations: