Does Aspartame Cause Lymphoma?

The approval of aspartame has a controversial history. The Commissioner of the U.S. Food and Drug Administration (FDA) concluded that “there is a reasonable certainty that human consumption of aspartame: (1) …will not pose a risk of brain damage resulting in mental retardation, endocrine [hormonal] dysfunction, or both; and (2) will not cause brain tumors.” However, the FDA’s own Public Board of Inquiry withdrew their approval over cancer concerns. “Further, several FDA scientists advised against the approval of aspartame, citing…[the aspartame company’s] own brain tumor tests…” Regardless, the Commissioner approved aspartame before he left the FDA and went on to enjoy a thousand-dollar-a-day consultancy position with the aspartame company’s PR firm. Then, the FDA actually prevented the National Toxicology Program (NTP) from doing further cancer testing. As I discuss in my video Does Aspartame Cause Cancer? we were then left with people battling over different rodent studies, some of which showed increased cancer risk, while others didn’t.

This reminds me of the saccharin story. That artificial sweetener caused bladder cancer in rats but not mice, leaving us “to determine whether humans are like the rat or like the mouse.” Clearly, we had to put the aspartame question to the test in people, but the longest human safety study lasted only 18 weeks. We needed better human data.

Since the largest rat study highlighted lymphomas and leukemias, the NIH-AARP study tracked blood cancer diagnoses and found that “[h]igher levels of aspartame intake were not associated with the risk of…cancer.” Although the NIH-AARP study was massive, it was criticized for only evaluating relatively short-term exposure. Indeed, people were only studied for five years, which is certainly better than 18 weeks, but how about 18 years?

All eyes turned to Harvard, where researchers had started following the health and diets of medical professionals before aspartame had even entered the market. “In the most comprehensive long-term [population] study…to evaluate the association between aspartame intake and cancer risk in humans,” they found a “positive association between diet soda and total aspartame intake and risks of [non-Hodgkin’s lymphoma] and multiple myeloma in men and leukemia in both men and women,” as you can see at 2:12 in my video. Why more cancer in men than women? A similar result was found for pancreatic cancer and diet soda, but not soda in general. In fact, the only sugar tied to pancreatic cancer risk was the milk sugar, lactose. The male/female discrepancy could have simply been a statistical fluke, but the researchers decided to dig a little deeper.

Aspartame is broken down into methanol, which is turned into formaldehyde, “a documented human carcinogen,” by the enzyme alcohol dehydrogenase.The same enzyme that detoxifies regular alcohol is the very same enzyme that converts methanol to formaldehyde. Is it possible men just have higher levels of this enzyme than women? Yes, which is why women get higher blood alcohol levels than men drinking the same amount of alcohol. If you look at liver samples from men and women, you can see significantly greater enzyme activity in the men, so perhaps the higher conversion rates from aspartame to formaldehyde explain the increased cancer risk in men? How do we test this?

Ethanol—regular alcohol—competes with methanol for this same enzyme’s attention. In fact, regular alcohol is actually “used as an antidote for methanol poisoning.” So, if this formaldehyde theory is correct, men who don’t drink alcohol or drink very little may have higher formaldehyde conversion rates from aspartame. And, indeed, consistent with this line of reasoning, the men who drank the least amounts of alcohol appeared to have the greatest cancer risk from aspartame.

A third cohort study has since been published and found no increased lymphoma risk associated with diet soda during a ten-year follow-up period. So, no risk was detected in the 18-week study, the 5-year study, or the 10-year study—only in the 18-year study. What should we make of all this?

Some have called for a re-evaluation of the safety of aspartame. The horse is kind of out of the barn at this point with 34 million pounds of aspartame produced annually, but that doesn’t mean we have to eat it, especially, perhaps, pregnant women and children.


For more information on the effects of aspartame, watch my videos Aspartame and the Brain and Aspartame-Induced Fibromyalgia. Interested in learning more about the effects of consuming diet soda? See, for example:

What about Splenda? Or monk fruit sweetener? I have videos on those, too—watch Effect of Sucralose (Splenda) on the Microbiome and Is Monk Fruit Sweetener Safe?.

I also do a comparison of the most popular sweeteners on the market, including stevia and xylitol, in my video A Harmless Artificial Sweetener.

Perhaps the best candidate is erythritol, which you can learn about in my video Erythritol May Be a Sweet Antioxidant. That said, it’s probably better if we get away from all intense sweeteners, artificial or not. See my video Unsweetening the Diet for more on this.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

The Foods With the Highest Aspirin Content

The results of a recent aspirin meta-analyses suggesting a reduction of cancer mortality by about one-third in subjects taking daily low-dose aspirin “can justly be called astounding.” Yet the protection from “Western” cancers enjoyed by those eating more traditional plant-centered diets, such as the Japanese, “is even more dramatic.” I examine this in my video Plants with Aspirin Aspirations.

Before the Westernization of their diets, animal products made up only about 5 percent or less of the Japanese diet. At 0:37 in my video, you can see the difference in cancer mortality of U.S. men and women compared with Japanese men and women. “[A]ge-adjusted death rates from cancers of the colon, prostate, breast, and ovary were on the order of 5–10-fold lower in Japan than in the US at that time; mortality from pancreatic cancer, leukemias, and lymphomas was 3–4-fold lower in Japan. But this phenomenon was by no means isolated to Japan; Western cancers were likewise comparatively rare in other societies where “people ate plant-based diets.”

“The cancer protection afforded by lifelong consumption of a plant-based diet, in conjunction with leanness and insulin sensitivity (which tend to be promoted by low-fat plant-based diets)…may be very substantial indeed.” Therefore, a “lifestyle protocol for minimizing cancer risk” may include a whole-food plant-based diet.

If part of this cancer protection arises out of the aspirin phytonutrients in plants, are there any plants in particular that are packed with salicylates? Though salicylic acid, the main active ingredient in aspirin, is “ubiquitously present in fruits and vegetables,” the highest concentrations are found in herbs and spices.

Red chili powder, paprika, and turmeric contain a lot of salicylates, but cumin is about 1 percent aspirin by weight. Eating a teaspoon of cumin is like taking a baby aspirin. (See the table at 1:54 in my video for details on other herbs and spices, and their salicylate content.) “Consequently, populations that incorporate substantial amounts of spices in foods may have markedly higher daily intakes of salicylates. Indeed, it has been suggested that the low incidence of colorectal cancer among Indian populations may be ascribed in part to high exposure to dietary salicylates throughout life from spice consumption.”

“The population of rural India, with an incidence of colorectal cancer which is one of the lowest in the world, has a diet that could be extremely rich in salicylic acid. It contains substantial amounts of fruits, vegetables, and cereals flavored with large quantities of herbs and spices.” Some have proposed it’s the curcumin in the spice turmeric (which I discuss in detail in my video Turmeric Curcumin and Colon Cancer), but it may be the salicylic acid in cumin—and the spicier the better.

A spicy vegetable vindaloo may have four times the salicylates of a milder Madras-style veggie dish. As you can see from the chart at 2:55 in my video, after just one meal, we get an aspirin spike in our bloodstream like we just took an aspirin. So, eating flavor-filled vegetarian meals, with herbs and spices, may be more chemoprotective—that is, more protective against cancer—than regular, blander vegetarian meals.

We may also want to eat organic produce. “Because salicylic acid is a defense hormone of plants, the concentration…is increased when plants become stressed,” like when they are bitten by bugs (unlike pesticide-laden plants). Indeed, soups made from organic vegetables were found to have nearly six times more salicylic acid than soups prepared from conventionally grown ingredients.

We should also choose whole foods. Whole-grain breads, which are high in salicylic acid, contain about 100 times more phytochemicals than white bread: 800 phytochemicals compared to 8.

“Interest in the potential beneficial effects of dietary salicylates has arisen, in part, because of the extensive literature on the disease-preventative effects of Aspirin™. However, it should not be forgotten that plant products found to contain salicylic acid are generally rich sources of other phenolic acids…[and many] also have a marked anti-inflammatory and redox-related bioactivity [that is, antioxidant activity] in mammalian cells. Their potential protective effects should not be overlooked. In this context, the importance of dietary salicylic acid should not perhaps be over emphasised…Indeed, some believe that ‘salicylic acid deficiency’ has important public health implications and that it should be classed as an essential vitamin, namely ‘Vitamin S’.”

What they’re saying is that we should all eat a lot of plants.


If you missed the first two videos in this series, see Should We All Take Aspirin to Prevent Heart Disease? and Should We All Take Aspirin to Prevent Cancer?.

The drug-like anti-inflammatory power of certain plant foods may make them a risky proposition during pregnancy. See Caution: Anti-Inflammatory Foods in the Third Trimester.

Herbs and spices not only have some of the most anti-inflammatory properties, but they also are well-rounded protectants. See:

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Cow Cancer Virus Implicated in Breast Cancer

Up to 20 percent of all cancers in general are linked to infections, particularly viruses, and the list of potentially carcinogenic infectious agents is growing. It would be great if we could find a virus that contributed to breast cancer risk, because then we might have new ways to prevent and treat it. Currently, the dietary link between breast cancer and consumption of meat and dairy is considered a saturated fat effect, but there is a cancer-causing bovine virus that infects the mammary gland cells of cows. The infectious virus is then released into the milk supply. Since most U.S. dairy herds are infected, scientists posit that Americans are often exposed to this bovine leukemia virus (BLV), which I discuss in my video The Role of Bovine Leukemia Virus in Breast Cancer.

We didn’t have proof of this until 2003, 34 years after the virus was first identified. Early on, our best available tests failed to find antibodies to BLV in human blood. When our immune system is exposed to a virus, it creates antibodies to attack it. No antibodies, no exposure. “This led to the prevailing opinion that…the virus is not a public health hazard.” Though those tests “were state of the art at that time, they are extremely insensitive compared to more modern techniques.” As a result, researchers decided to re-examine the issue now that we have better tests. They took blood from about 250 people simply to address the question: “Do any humans have antibodies to BLV?” The answer? Yes, 191 of them did––74 percent. That shouldn’t have come as a surprise, however: By then, nearly 90 percent of American dairy herds were infected, and, according to the latest national survey, 100 percent of the big factory dairy farms were infected, as determined by testing the milk coming from those operations. Given this, why isn’t there an epidemic of cancer of the udder? Dairy cattle are slaughtered so young that there isn’t a lot of time for them to develop gross tumors, but that’s how most women may be getting infected. Although pasteurization should knock out the virus, who hasn’t eaten a rare, pink-in-the-middle burger at some point?

The bottom line is that the “long-held assumption that BLV is not a public health hazard…is no longer tenable…” This whole field of investigation needs to be reopened, with the next step determining whether humans are actually infected. “The presence of antibodies to particular viruses in human sera is generally interpreted as an indicator of a present or past infection with the virus.” But, theoretically, we might have developed antibodies to the dead viruses we ate, viruses that had been killed by cooking or pasteurization. Just because three-quarters of us have been exposed doesn’t mean we were actively infected by the virus.

How do we prove this? We would need to find the retrovirus actively stitched into our own DNA. Well, millions of women have had breast surgery, so why not just look at the tissue? Researchers finally did just that and published their findings in the Centers for Disease Control and Protection’s emerging infectious diseases journal: Forty-four percent of samples tested positive for BLV, proving for the first time that humans can be infected with bovine leukemia virus. The final step? Determine whether the virus is actually contributing to disease. In other words, are the bovine leukemia viruses we’re finding in human breast tissue cancer-causing or just “harmless passengers”?

One way to make that determination is to see whether the virus is more often present in those with breast cancer. No one had ever looked for the virus in breast tissue from people with cancer…until now. The “[p]resence of BLV-DNA in breast tissues was strongly associated with diagnosed and histologically confirmed breast cancer…” As many as 37 percent of human breast cancer cases may be attributable to exposure to bovine leukemia virus.


For some historical background leading up to these shocking findings, see my video Is Bovine Leukemia Virus in Milk Infectious?.

I couldn’t wait to read the meat and dairy industry journals to see how they’d try to spin this. Find out what I discovered in my final video in this series Industry Response to Bovine Leukemia Virus in Breast Cancer.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations: