Dietary Cure for Hidradenitis Suppurativa

What is the role of dairy- and yeast-exclusion diets on arresting and reversing an inflammatory autoimmune disease?

A landmark study suggested that exposure to dietary yeast, like baker’s yeast, brewer’s yeast, and nutritional yeast, may worsen the course of Crohn’s disease, an autoimmune inflammatory bowel disease. The reason the researchers even thought to do the study was because Crohn’s patients tend to have elevated levels of antibodies to yeast, but Crohn’s is not the only autoimmune disease with increased yeast antibodies. The same has been found in lupus patients, found in rheumatoid arthritis, found in another joint disease called ankylosing spondylitis, found in autoimmune liver disease, and also found in autoimmune thyroid disease. So, might avoiding yeast help those conditions, too? They haven’t been put to the test, but hidradenitis suppurativa has. What is that? I discuss this in my video Dietary Cure for Hidradenitis Suppurativa.

Hidradenitis suppurativa can be a gruesome disease. It starts out with just pimples, typically along parts of the body where there are folds, such as the armpits, groins, buttocks, and under the breast. Then, painful nodules form that turn into abscesses and drain a thick, foul-smelling pus. And then? It gets even worse, forming active tunnels of pus inside your body.

And, it is not that rare. It has an estimated prevalence of about 1 to 4 percent, which is like 1 in 50. Clothes typically cover it up so it remains hidden, but you can often smell the pus oozing out of people. There are all sorts of surgical options and chemotherapy, but why did researchers even think to try diet for the condition? I mean, since Crohn’s is a disease of intestinal inflammation, you can see how a food you react to could make matters worse, but why a disease of armpit inflammation? Because there seems to be a link between hidradenitis suppurativa and Crohn’s disease. Having one may make you five times more likely to have the other, so there may be an “immunopathogenic link” between the two—they may share similar abnormal immune responses. Given that, if cutting yeast out of Crohn’s patients’ diets helps them, then maybe cutting it out of the diets of people with hidradenitis suppurativa might help them. A dozen patients with hidradenitis suppurativa were put on a diet that eliminated foods with yeast, like bread and beer, and they all got better, 12 out of 12. There was an “immediate stabilization of their clinical symptoms, and the skin lesions regressed,” that is, reversed, and went away within a year on the diet. Okay, but how do we know it was the yeast? By cutting out a food like pizza, you also may be cutting out a lot of dairy, and that also appears to help. Indeed, a dairy-free diet led to improvement in about five out of six patients.

See, those tunnels of pus are caused by the rupturing of the same kind of sebaceous glands that can cause regular acne. In hidradenitis suppurativa, however, they explode, and “[d]airy products contain 3 components that drive the process that blocks the duct [clogging your pores] and contributes to its leakage, rupture, and ultimate explosion.” First, there’s casein, which elevates IGF-1. (I have about a dozen videos on IGF-1.) Second, the whey and lactose, and third, the hormones in the milk itself—six hormones produced by the cow, her placenta, and mammary glands that end up in the milk. So, why not try cutting out dairy to see if things improve?

There is a whole series of nasty drugs you can use to try to beat back the inflammation, but as soon as you stop taking them, the disease can come roaring back. Even after extensive surgery, the disease comes back in 25 to 50 percent of cases, so we are desperate to research new treatment options. But, patients aren’t waiting. They’re getting together in online communities, sharing their trial and error though social media, and people have reported successes cutting out dairy and refined carbohydrates, like white flour and sugar. So, a dermatologist in New Hampshire decided to give dairy-free a try, and 83 percent of the hidradenitis suppurativa patients he tried it on started to get better. What’s more, he didn’t even try cutting the sugar and flour out of their diets. Now, he didn’t conduct a clinical trial or anything. He just figured why not give dairy-free a go? It’s not easy to conduct randomized, clinical, dietary interventions, but that doesn’t stop individual patients from giving things a try. I mean, you can understand why there have to be institutional review boards and the like when trying out new, risky drugs and surgeries, but if it’s just a matter of trying a switch from cow’s milk to soy milk, for example, why do they have to wait? “As patients search for an effective path to clearance [of this horrible disease], they need support and guidance to follow the most healthful diet available, free of dairy and highly processed sugar and flour. Nothing could be more natural.”

But what about the yeast? How do we know it was the yeast? In the study we discussed earlier, 8 of the 12 patients had just gone through surgery, so maybe that’s why they got so much better. It’s similar to when I hear that someone with cancer had gone through the conventional route of chemotherapy, surgery, and radiation before going to some questionable clinic and then attributes their cure to the wheatgrass colonics or whatever else they got. How do they know it wasn’t the chemo/surgery/radiation that saved them? Well, in this study, why do we suspect it was the yeast? Because not only did every single one of the patients get better, “all the patients demonstrated an immediate recurrence of skin lesions following accidental or voluntary consumption of beer or other foods” like bread. So, not only did the elimination of yeast result in “rapid stabilization” and “a slow, but complete, regression of the skin lesions within a year,” but, in every single case, within 24 to 48 hours of taking a little brewer’s yeast or other “yeast-containing foods,” BAM!—the symptoms were back. So, that’s why the researchers concluded a “simple exclusion diet could promote the resolution of the skin lesions involved in this disabling and [perhaps not so] rare disease.”

What was the response in the medical community to this remarkable, landmark study? “Why was there no mention of informed consent and ethics committee approval…?” Letter after letter to the editor of the journal complained that the researchers had violated the Declaration of Helsinki, which is like the Nuremburg Code or Geneva Convention to protect against involuntary human experimentation, and asked where was the institutional review board approval for this yeast-exclusion study? In response, the researchers simply replied that they had just told them to avoid a few foods. They had given them the choice: We can put you on drugs that can have side effects, such as liver problems, or you can try out this diet. “The patients preferred the diet.” Let’s not forget, I would add, that they were all cured!

Anyway, bottom line, by avoiding foods, like pizza, which contains both dairy and yeast, sufferers may be able to prevent the ravages of the disease.


This is the fourth and final installment of a video series on the role baker’s, brewer’s, and nutritional yeast may play in certain autoimmune diseases. If you missed any of the others, see:

For more on dairy hormones, see:

Check out our IGF-1 topic page if you’re unfamiliar with this cancer-promoting growth hormone, which I highlight in my video Animal Protein Compared to Cigarette Smoking.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Eating to Block Lead Absorption

Intake of certain nutrients has been associated with lower lead levels in the body. For example, women with higher intake of thiamine, also called vitamin B1, tended to have lower blood lead levels, and the same was found for lead-exposed steel workers—and not just with thiamine, as “content of dietary fiber, iron, or thiamine intake each correlated inversely with blood lead concentrations in workers…” The thinking is that the fiber might glom onto the lead and flush it out of the body, the iron would inhibit the lead absorption, and the thiamine may accelerate lead removal through the bile. So, researchers suggest that eating lots of iron, fiber and especially thiamine-rich foods “may induce rapid removal and excretion of the lead from the tissues.” But thiamine’s never been put to the test by giving it to people to see if their lead levels drop. The closest I could find is a thiamine intervention for lead-intoxicated goats.
 

And much of the fiber data are just from test tube studies. In one, for example, researchers used simulated intestinal conditions, complete with “flasks” of feces, and both soluble and insoluble dietary fiber were able to bind up large amounts of mercury, cadmium, and lead to such an extent that they may have been able to block absorption in the small intestine. But, when our good gut flora then eat the fiber, some of the heavy metals may be re-released down in the colon, so it’s not completely fail safe. And, as with thiamine, there haven’t been controlled human studies.

But where is thiamine found? At 1:47 in my video How to Lower Lead Levels with Diet: Thiamine, Fiber, Iron, Fat, Fasting?, I feature a list of some of the healthiest sources of thiamine-rich foods that also contain fiber, which include highly concentrated, super healthy foods like beans and greens—foods we should all be eating anyway. So, even if thiamine- and fiber-rich foods don’t actually lower lead levels, we’ll still end up healthier.

What happened when iron was put to the test? It failed to improve the cognitive performance of lead-exposed children and failed to improve behavior or ADH symptoms, which is no surprise, because it also failed to bring down lead levels, as did zinc supplementation. It turns out that while iron may limit the absorption of lead, “it may also inhibit excretion of previously absorbed lead” that’s already in your body. What’s more, iron may not even inhibit lead absorption in the first place. That was based on rodent studies, and it turns out we’re not rodents.

We get the same story with zinc. It may have helped to protect rat testicles, but didn’t seem to help human children. “Nevertheless, iron is routinely prescribed in children with lead poisoning.” But, “given the lack of scientific evidence supporting the use of iron [supplementation] in…children with lead poisoning, its routine use should be re-examined.” Though, obviously, supplementation may help if you have an iron deficiency.

High fat intake has been identified as a nutritional condition that makes things worse for lead-exposed children. In fact, dietary fat has been associated with higher lead levels in cross-sectional, snapshot-in-time type studies, and there is a plausible biological mechanism: Dietary fat may boost lead absorption by stimulating extra bile, which in turn may contribute to lead absorption, but you really don’t know until you put it to the test.

In addition to testing iron, researchers also tested fat. They gave a group of intrepid volunteers a cocktail of radioactive lead and then, with a Geiger counter, measured how much radiation the subjects retained in their bodies. Drinking the lead with iron or zinc didn’t change anything, but adding about two teaspoons of vegetable oil boosted lead absorption into the body from about 60 percent up to around 75 percent, as you can see at 4:17 in my video.

The only thing that seemed to help, dropping lead absorption down to about 40 percent, was eating a light meal with the lead drink. What was the meal? Coffee and a donut. I think this is the first donut intervention I’ve ever seen with a positive outcome! Could it have been the coffee? Unlikely, because if anything, coffee drinking has been associated with a tiny increase in blood lead levels. If fat makes things worse, and the one sugar they tried didn’t help, the researchers figured that what made the difference was just eating food—any food—and not taking in lead on an empty stomach. And, indeed, if you repeat the study with a whole meal, lead absorption doesn’t just drop from 60 percent to 40 percent—it drops all the way down to just 4 percent! That’s extraordinary. That means it’s 15 times worse to ingest lead on an empty stomach.

Lead given 12 hours before a meal was absorbed at about 60 percent, so most of it was absorbed. When the same amount of lead was given three hours after a meal and also seven hours after a meal, most of it was absorbed at those times, too. But, if you get some food in your stomach within a few hours of lead exposure, you can suppress the absorption of some or nearly all of the lead you ingested, which you can see at 0:11 in my video How to Lower Lead Levels with Diet: Breakfast, Whole Grains, Milk, Tofu?.

This is why it’s critical to get the lead out of our tap water. Although it’s estimated that most of our lead exposure comes from food, rather than water, it’s not what we eat that matters, but what we absorb. If 90 percent of the lead in food is blocked from absorption by the very fact that it’s in food, 10 to 20 times more lead could be absorbed into your bloodstream simply by consuming the same amount of lead in water drank on an empty stomach.

And, since children empty their stomachs faster than adults because kids “have more rapid gastric emptying times,” the timing of meals may be even more important. With little tummies emptying in as few as two hours after a meal, offering midmorning and midafternoon snacks in addition to breakfast and regular meals may cut down on lead absorption in a contaminated environment. And, of course, we should ensure that children wash their hands prior to eating.

So, do preschoolers who eat breakfast have lower levels of lead in their blood? In the first study of its kind, researchers found that, indeed, children who ate breakfast regularly did appear to have lower lead levels, supporting recommendations to provide regular meals and snacks to young children at risk for lead exposure.

Is there anything in food that’s particularly protective? Researchers tested all sorts of foods to find out, and it turns out the “effect of a meal was probably largely due to its content of calcium and phosphate salts but lead uptake was probably further reduced by phytate which is plentiful in whole cereals,” but if calcium and phosphates are protective, you’d think dairy would work wonders. And, indeed, they started giving milk “to workers to prevent lead exposure” ever since calcium was shown to inhibit lead absorption in rats. But, in humans, there’s something in milk that appeared to increase lead uptake, and it wasn’t the fat because they found the same problem with skim milk.

“For over a century milk was recommended unreservedly to counteract lead poisoning in industry,” but this practice was abandoned in the middle of the last century once we learned that milk’s “overall effect is to promote the absorption of lead from the intestinal tract.” What’s the agent in milk that promotes the absorption of lead from the gut? It may be the milk sugar, lactose, though the “mechanism by which lactose enhances lead absorption is not clear.”

The bottom line? “In the past…milk was used as a prophylactic agent to protect workers in the lead industry. Recent studies, however, suggest that this practice is unjustified and may even be harmful.” So, giving people whole grains may offer greater protection against lead uptake.

However, the most potently calcium and phytate-rich food would be tofu. Isolated soy phytonutrients may have a neuroprotective effect, at least this was the case in petri dish-type studies. As you can see at 3:45 in my video, if you add a little lead to nerve cells, you can kill off about 40 percent of them, but if you then give more and more soy phytonutrients, you can ameliorate some of the damage. This is thought to be an antioxidant effect. If you add lead to nerve cells, you can get a big burst of free radicals, but less and less as you drip on more soy compounds.

Nevertheless, even if this worked outside of a lab, cutting down on the toxic effects of lead is nice, but cutting down on the levels of lead in your body is even better. “Because tofu has high content of both calcium and phytic acid phytate…it is biologically plausible that tofu may inhibit lead absorption and retention, thus reducing blood lead levels.” But you don’t know, until you put it to the test.

Tofu consumption and blood lead levels were determined for about a thousand men and women in China. For every nine or so ounces of tofu consumed a week, there appeared to be about four percent less lead in their bloodstream. Those who ate up to two and a half ounces a day had only half the odds of having elevated lead levels, compared to those eating less than about nine ounces a week. Those consuming nearly four ounces a day appeared to cut their odds by more than 80 percent. This was just a cross-sectional study, or snapshot in time, so it can’t prove cause and effect. What you need is an interventional study where you randomize people into two groups, giving half of them some food to see if it drives down lead levels. I cover this in my video Best Food for Lead Poisoning: Chlorella, Cilantro, Tomatoes, Moringa?.


Where does all this lead exposure come from anyway? Check out the first five videos on this series:

For more about blocking lead absorption, as well as what to eat to help rid yourself of the lead you’ve already built up, see:

Or, even better, don’t get exposed in the first place. Find out more in these videos:

Some of my other videos on lead include:

And what about lead levels in women? See:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

 

Does Aspartame Cause Lymphoma?

The approval of aspartame has a controversial history. The Commissioner of the U.S. Food and Drug Administration (FDA) concluded that “there is a reasonable certainty that human consumption of aspartame: (1) …will not pose a risk of brain damage resulting in mental retardation, endocrine [hormonal] dysfunction, or both; and (2) will not cause brain tumors.” However, the FDA’s own Public Board of Inquiry withdrew their approval over cancer concerns. “Further, several FDA scientists advised against the approval of aspartame, citing…[the aspartame company’s] own brain tumor tests…” Regardless, the Commissioner approved aspartame before he left the FDA and went on to enjoy a thousand-dollar-a-day consultancy position with the aspartame company’s PR firm. Then, the FDA actually prevented the National Toxicology Program (NTP) from doing further cancer testing. As I discuss in my video Does Aspartame Cause Cancer? we were then left with people battling over different rodent studies, some of which showed increased cancer risk, while others didn’t.

This reminds me of the saccharin story. That artificial sweetener caused bladder cancer in rats but not mice, leaving us “to determine whether humans are like the rat or like the mouse.” Clearly, we had to put the aspartame question to the test in people, but the longest human safety study lasted only 18 weeks. We needed better human data.

Since the largest rat study highlighted lymphomas and leukemias, the NIH-AARP study tracked blood cancer diagnoses and found that “[h]igher levels of aspartame intake were not associated with the risk of…cancer.” Although the NIH-AARP study was massive, it was criticized for only evaluating relatively short-term exposure. Indeed, people were only studied for five years, which is certainly better than 18 weeks, but how about 18 years?

All eyes turned to Harvard, where researchers had started following the health and diets of medical professionals before aspartame had even entered the market. “In the most comprehensive long-term [population] study…to evaluate the association between aspartame intake and cancer risk in humans,” they found a “positive association between diet soda and total aspartame intake and risks of [non-Hodgkin’s lymphoma] and multiple myeloma in men and leukemia in both men and women,” as you can see at 2:12 in my video. Why more cancer in men than women? A similar result was found for pancreatic cancer and diet soda, but not soda in general. In fact, the only sugar tied to pancreatic cancer risk was the milk sugar, lactose. The male/female discrepancy could have simply been a statistical fluke, but the researchers decided to dig a little deeper.

Aspartame is broken down into methanol, which is turned into formaldehyde, “a documented human carcinogen,” by the enzyme alcohol dehydrogenase.The same enzyme that detoxifies regular alcohol is the very same enzyme that converts methanol to formaldehyde. Is it possible men just have higher levels of this enzyme than women? Yes, which is why women get higher blood alcohol levels than men drinking the same amount of alcohol. If you look at liver samples from men and women, you can see significantly greater enzyme activity in the men, so perhaps the higher conversion rates from aspartame to formaldehyde explain the increased cancer risk in men? How do we test this?

Ethanol—regular alcohol—competes with methanol for this same enzyme’s attention. In fact, regular alcohol is actually “used as an antidote for methanol poisoning.” So, if this formaldehyde theory is correct, men who don’t drink alcohol or drink very little may have higher formaldehyde conversion rates from aspartame. And, indeed, consistent with this line of reasoning, the men who drank the least amounts of alcohol appeared to have the greatest cancer risk from aspartame.

A third cohort study has since been published and found no increased lymphoma risk associated with diet soda during a ten-year follow-up period. So, no risk was detected in the 18-week study, the 5-year study, or the 10-year study—only in the 18-year study. What should we make of all this?

Some have called for a re-evaluation of the safety of aspartame. The horse is kind of out of the barn at this point with 34 million pounds of aspartame produced annually, but that doesn’t mean we have to eat it, especially, perhaps, pregnant women and children.


For more information on the effects of aspartame, watch my videos Aspartame and the Brain and Aspartame-Induced Fibromyalgia. Interested in learning more about the effects of consuming diet soda? See, for example:

What about Splenda? Or monk fruit sweetener? I have videos on those, too—watch Effect of Sucralose (Splenda) on the Microbiome and Is Monk Fruit Sweetener Safe?.

I also do a comparison of the most popular sweeteners on the market, including stevia and xylitol, in my video A Harmless Artificial Sweetener.

Perhaps the best candidate is erythritol, which you can learn about in my video Erythritol May Be a Sweet Antioxidant. That said, it’s probably better if we get away from all intense sweeteners, artificial or not. See my video Unsweetening the Diet for more on this.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations: