Eating to Block Lead Absorption

Intake of certain nutrients has been associated with lower lead levels in the body. For example, women with higher intake of thiamine, also called vitamin B1, tended to have lower blood lead levels, and the same was found for lead-exposed steel workers—and not just with thiamine, as “content of dietary fiber, iron, or thiamine intake each correlated inversely with blood lead concentrations in workers…” The thinking is that the fiber might glom onto the lead and flush it out of the body, the iron would inhibit the lead absorption, and the thiamine may accelerate lead removal through the bile. So, researchers suggest that eating lots of iron, fiber and especially thiamine-rich foods “may induce rapid removal and excretion of the lead from the tissues.” But thiamine’s never been put to the test by giving it to people to see if their lead levels drop. The closest I could find is a thiamine intervention for lead-intoxicated goats.
 

And much of the fiber data are just from test tube studies. In one, for example, researchers used simulated intestinal conditions, complete with “flasks” of feces, and both soluble and insoluble dietary fiber were able to bind up large amounts of mercury, cadmium, and lead to such an extent that they may have been able to block absorption in the small intestine. But, when our good gut flora then eat the fiber, some of the heavy metals may be re-released down in the colon, so it’s not completely fail safe. And, as with thiamine, there haven’t been controlled human studies.

But where is thiamine found? At 1:47 in my video How to Lower Lead Levels with Diet: Thiamine, Fiber, Iron, Fat, Fasting?, I feature a list of some of the healthiest sources of thiamine-rich foods that also contain fiber, which include highly concentrated, super healthy foods like beans and greens—foods we should all be eating anyway. So, even if thiamine- and fiber-rich foods don’t actually lower lead levels, we’ll still end up healthier.

What happened when iron was put to the test? It failed to improve the cognitive performance of lead-exposed children and failed to improve behavior or ADH symptoms, which is no surprise, because it also failed to bring down lead levels, as did zinc supplementation. It turns out that while iron may limit the absorption of lead, “it may also inhibit excretion of previously absorbed lead” that’s already in your body. What’s more, iron may not even inhibit lead absorption in the first place. That was based on rodent studies, and it turns out we’re not rodents.

We get the same story with zinc. It may have helped to protect rat testicles, but didn’t seem to help human children. “Nevertheless, iron is routinely prescribed in children with lead poisoning.” But, “given the lack of scientific evidence supporting the use of iron [supplementation] in…children with lead poisoning, its routine use should be re-examined.” Though, obviously, supplementation may help if you have an iron deficiency.

High fat intake has been identified as a nutritional condition that makes things worse for lead-exposed children. In fact, dietary fat has been associated with higher lead levels in cross-sectional, snapshot-in-time type studies, and there is a plausible biological mechanism: Dietary fat may boost lead absorption by stimulating extra bile, which in turn may contribute to lead absorption, but you really don’t know until you put it to the test.

In addition to testing iron, researchers also tested fat. They gave a group of intrepid volunteers a cocktail of radioactive lead and then, with a Geiger counter, measured how much radiation the subjects retained in their bodies. Drinking the lead with iron or zinc didn’t change anything, but adding about two teaspoons of vegetable oil boosted lead absorption into the body from about 60 percent up to around 75 percent, as you can see at 4:17 in my video.

The only thing that seemed to help, dropping lead absorption down to about 40 percent, was eating a light meal with the lead drink. What was the meal? Coffee and a donut. I think this is the first donut intervention I’ve ever seen with a positive outcome! Could it have been the coffee? Unlikely, because if anything, coffee drinking has been associated with a tiny increase in blood lead levels. If fat makes things worse, and the one sugar they tried didn’t help, the researchers figured that what made the difference was just eating food—any food—and not taking in lead on an empty stomach. And, indeed, if you repeat the study with a whole meal, lead absorption doesn’t just drop from 60 percent to 40 percent—it drops all the way down to just 4 percent! That’s extraordinary. That means it’s 15 times worse to ingest lead on an empty stomach.

Lead given 12 hours before a meal was absorbed at about 60 percent, so most of it was absorbed. When the same amount of lead was given three hours after a meal and also seven hours after a meal, most of it was absorbed at those times, too. But, if you get some food in your stomach within a few hours of lead exposure, you can suppress the absorption of some or nearly all of the lead you ingested, which you can see at 0:11 in my video How to Lower Lead Levels with Diet: Breakfast, Whole Grains, Milk, Tofu?.

This is why it’s critical to get the lead out of our tap water. Although it’s estimated that most of our lead exposure comes from food, rather than water, it’s not what we eat that matters, but what we absorb. If 90 percent of the lead in food is blocked from absorption by the very fact that it’s in food, 10 to 20 times more lead could be absorbed into your bloodstream simply by consuming the same amount of lead in water drank on an empty stomach.

And, since children empty their stomachs faster than adults because kids “have more rapid gastric emptying times,” the timing of meals may be even more important. With little tummies emptying in as few as two hours after a meal, offering midmorning and midafternoon snacks in addition to breakfast and regular meals may cut down on lead absorption in a contaminated environment. And, of course, we should ensure that children wash their hands prior to eating.

So, do preschoolers who eat breakfast have lower levels of lead in their blood? In the first study of its kind, researchers found that, indeed, children who ate breakfast regularly did appear to have lower lead levels, supporting recommendations to provide regular meals and snacks to young children at risk for lead exposure.

Is there anything in food that’s particularly protective? Researchers tested all sorts of foods to find out, and it turns out the “effect of a meal was probably largely due to its content of calcium and phosphate salts but lead uptake was probably further reduced by phytate which is plentiful in whole cereals,” but if calcium and phosphates are protective, you’d think dairy would work wonders. And, indeed, they started giving milk “to workers to prevent lead exposure” ever since calcium was shown to inhibit lead absorption in rats. But, in humans, there’s something in milk that appeared to increase lead uptake, and it wasn’t the fat because they found the same problem with skim milk.

“For over a century milk was recommended unreservedly to counteract lead poisoning in industry,” but this practice was abandoned in the middle of the last century once we learned that milk’s “overall effect is to promote the absorption of lead from the intestinal tract.” What’s the agent in milk that promotes the absorption of lead from the gut? It may be the milk sugar, lactose, though the “mechanism by which lactose enhances lead absorption is not clear.”

The bottom line? “In the past…milk was used as a prophylactic agent to protect workers in the lead industry. Recent studies, however, suggest that this practice is unjustified and may even be harmful.” So, giving people whole grains may offer greater protection against lead uptake.

However, the most potently calcium and phytate-rich food would be tofu. Isolated soy phytonutrients may have a neuroprotective effect, at least this was the case in petri dish-type studies. As you can see at 3:45 in my video, if you add a little lead to nerve cells, you can kill off about 40 percent of them, but if you then give more and more soy phytonutrients, you can ameliorate some of the damage. This is thought to be an antioxidant effect. If you add lead to nerve cells, you can get a big burst of free radicals, but less and less as you drip on more soy compounds.

Nevertheless, even if this worked outside of a lab, cutting down on the toxic effects of lead is nice, but cutting down on the levels of lead in your body is even better. “Because tofu has high content of both calcium and phytic acid phytate…it is biologically plausible that tofu may inhibit lead absorption and retention, thus reducing blood lead levels.” But you don’t know, until you put it to the test.

Tofu consumption and blood lead levels were determined for about a thousand men and women in China. For every nine or so ounces of tofu consumed a week, there appeared to be about four percent less lead in their bloodstream. Those who ate up to two and a half ounces a day had only half the odds of having elevated lead levels, compared to those eating less than about nine ounces a week. Those consuming nearly four ounces a day appeared to cut their odds by more than 80 percent. This was just a cross-sectional study, or snapshot in time, so it can’t prove cause and effect. What you need is an interventional study where you randomize people into two groups, giving half of them some food to see if it drives down lead levels. I cover this in my video Best Food for Lead Poisoning: Chlorella, Cilantro, Tomatoes, Moringa?.


Where does all this lead exposure come from anyway? Check out the first five videos on this series:

For more about blocking lead absorption, as well as what to eat to help rid yourself of the lead you’ve already built up, see:

Or, even better, don’t get exposed in the first place. Find out more in these videos:

Some of my other videos on lead include:

And what about lead levels in women? See:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

 

What’s the Best Ferritin Level to Lower Cancer Risk?

If cancer is indeed a so-called ferrotoxic disease, a consequence, in part, of iron toxicity, that would explain not only the dramatic drop in cancer rates after blood donations, but also why people with higher levels of iron in their blood have an increased risk of dying from cancer, why women who bleed into their ovaries are at high risk for ovarian cancer, and why those suffering from hemochromatosis (an iron overload disease) have up to 200 times the risk of cancer. There has even been a call to go back and look at some of the chemotherapy trials that kept taking blood from the chemo group to check for side effects. Perhaps just the iron removal from the blood draws accounted for some of the apparent chemo benefits.

Iron may be a double-edged sword, as I explore in my video Donating Blood to Prevent Cancer?. Iron deficiency causes anemia, whereas excessive iron may increase cancer risk, presumably by acting as a pro-oxidant and generating free radicals. Iron-deficiency anemia is a serious problem in the developing world. “In meat-eating countries, however, iron excess may be more of a problem than iron deficiency…Body iron stores accumulate insidiously with ageing due to the fact that intake exceeds loss,” and our body has no good way of getting rid of excess iron.

Ferritin is a blood test measure of our backup iron stores. As you can see at 1:31 in my video, the normal range is about 12 to 200 ng/mL—but just because it’s normal doesn’t mean it’s ideal. In the blood donor study discussed earlier, those who developed cancer had ferritin levels around 127.1 ng/mL. The average for men may be over a hundred.

This suggests that so-called normal, “ambient levels of iron stores may be noxious and constitute a ‘public’ problem that affects large segments of the population.” As such, “[t]here may be a need to redefine the normal range…based on associated disease risk” rather than following a bell curve. “Thus, iron deficiency may exist when ferritin levels decline to less than about 12 ng/mL, whereas ferrotoxic disease may occur with levels greater than about 50 ng/mL.”

Harvard recently looked at blood donations and colorectal cancer, and found no connection, but the range of ferritin levels the researchers looking at was roughly 100 to less than 200 ng/mL, as you can see at 2:28 in my video. What’s more, those were from individuals who reported giving blood 30 or more times. So, perhaps instead of draining our blood to reduce excess iron stores, why not prevent the iron overload in the first place? If we measure the iron stores of men who stay away from heme iron and, instead, get all of their iron from plants, their iron levels are right around where the cancer-free donor group came in, as you can see at 2:54 in my video. This may help explain why those eating plant-based diets tend to have less cancer and other diseases associated with iron overload. Indeed, they may also have less pre-diabetes, as well as have less diabetes.


For more on the blood donor study I discussed, see Donating Blood to Prevent Heart Disease?.

For more on diet and iron levels, see The Safety of Heme vs. Non-Heme Iron and Risk Associated with Iron Supplements.

Interested in other examples of normal lab values not being necessarily ideal? Check out:

Even though a plant-based diet may be preferable for personal disease risk, that doesn’t mean we shouldn’t all give blood. Join me in supporting the Red Cross.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Lowering Your Cancer Risk by Donating Blood

Back in the early 1980s, a pathologist in Florida suggested that the reason premenopausal women are protected from heart disease is that they have lower stores of iron in their body. Since oxidized cholesterol is “important in atherosclerosis, and oxidation is catalyzed by iron,” might the lower iron stores of menstruating women reduce their risk of coronary heart disease? “The novel insight suggesting that the longevity enjoyed by women over men might relate to the monthly loss…of blood is remarkable,” but is it true? I discuss this in my video Donating Blood to Prevent Heart Disease?.

The consumption of heme iron—the iron found in blood and muscle—is associated with increased risk of heart disease. Indeed, “an increase in heme iron intake of 1 mg/day appeared to be significantly associated with a 27% increase in risk of CHD,” coronary heart disease. But, heme iron is found mainly in meat, so “it is possible that some constituents other than heme iron in meat such as saturated fat and cholesterol are responsible” for the apparent link between heme iron and heart disease. If only we could find a way to get men to menstruate, then we could put the theory to the test. What about blood donations? Why just lose a little blood every month when you can donate a whole unit at a time?

A study in Nebraska suggested that blood donors were at “reduced risk of cardiovascular events,” but another study in Boston failed to show any connection. To definitively resolve the question, we would really have to put it to the test: Take people at high risk for heart disease, randomly bleed half of them, and then follow them over time and see who gets more heart attacks. Maybe it could turn “bloodletting” from the past into “bleeding-edge technology.” In fact, that was actually what was suggested in the original paper as a way to test this idea: “The depletion of iron stores by regular phlebotomy could be the experimental system for testing this hypothesis…”

It took 20 years, but researchers finally did it. Why did it take so long? There isn’t much money in bloodletting these days. I suppose the leech lobby just isn’t as powerful as it used to be.

What did the researchers find? It didn’t work. The blood donors ended up having the same number of heart attacks as the non-donor group. Something extraordinary did happen, however: The cancer rates dropped. There was a 37 percent reduction in overall cancer incidence, and those who developed cancer had a significantly reduced risk of death. An editorial in the Journal of the National Cancer Institute responded with near disbelief, saying the “results almost seem to be too good to be true.” “Strikingly,” they started to see cancer reduction benefits within six months, after giving blood just once. As the study progressed, the cancer death rates started to diverge within just six months, as you can see at 2:46 in my video, but this is consistent with the spike in cancer rates we see within only six months of getting a blood transfusion. Is it possible that influx of iron accelerated the growth of hidden tumors?


I continue this wild story in my video Donating Blood to Prevent Cancer?.

What if you feel faint when you give blood? Don’t worry. I’ve got you covered. Check out How to Prevent Fainting.

What might iron have to do with disease? See The Safety of Heme vs. Non-Heme Iron and Risk Associated with Iron Supplements.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations: