The Role of Meat and Dairy in Triggering Type 1 Diabetes

Type 1 diabetes “arises following the autoimmune destruction of the insulin-producing pancreatic β [beta] cells…[and] is most often diagnosed in children and adolescents, usually presenting with a classic trio of symptoms” as their blood sugars spike: excessive thirst, hunger, and urination. They need to go on insulin for the rest of their lives, since their own immune systems attacked and destroyed their ability to produce it. What would cause our body to do such a thing? I examine this in my video, Does Paratuberculosis in Milk Trigger Type 1 Diabetes?

Whatever it is, it has been on the rise around the world, starting after World War 2. “Understanding why and how this produced the current pandemic of childhood diabetes would be an important step toward reversing it.” A plausible guess is “molecular mimicry, whereby a foreign antigen (bacterial or viral) provokes an immune response, which cross-reacts” with a similar-looking protein on our pancreas such that when we attack the bug, our own organ gets caught in the cross-fire. Given this, what pancreatic proteins are type 1 diabetics self-attacking? In the 1980s, a protein was identified that we came to realize in the 1990s looked an awful lot like a certain mycobacterial protein. Mycobacteria are a family of bacteria that cause diseases like tuberculosis and leprosy, and, in one study, all newly diagnosed type 1 diabetic children were found to have immune responses to this mycobacterial protein. This didn’t make any sense as incidence of type 1 diabetes has been going up in the industrialized world, whereas TB and leprosy rates have gone down. However, there is one mycobacterial infection in farm animals that has shot up with the industrialization and globalization of animal agriculture: paratuberculosis (paraTB), which causes Johne’s disease in animals. Paratuberculosis is now recognized as a global problem for the livestock industry.

Weren’t there a dozen or so studies suggesting that “cow’s milk exposure may be an important determinant of subsequent type 1 diabetes” in childhood? Indeed. After putting two and two together, an idea was put forward in 2006: Could mycobacterium paratuberculosis from cattle be a trigger for type 1 diabetes? The idea was compelling enough for researchers put it to the test.

They attempted to test the association of Mycobacterium avium paratuberculosis (MAP), the full name for the bug, with type 1 diabetes by testing diabetics for the presence of the bacteria in their blood. Lo and behold, most of the diabetic patients tested positive for the bug, compared to only a minority of the healthy control subjects. This evidence of MAP bacteria in the blood of patients with type 1 diabetes “might provide an important foundation in establishing an infectious etiology,” or cause, for type 1 diabetes. “These results also might possibly have implications for countries that have the greatest livestock populations and high incidence of MAP concurrent with the highest numbers of patients with” diabetes, like the United States.

Johne’s is the name of the disease when farm animals get infected by MAP. The reason diabetes researchers chose to look at Sardinia, an island off the coast of Italy, is because paratuberculosis is present in more than 50 percent of Sardinian herds. Surpassing that, though, is the U.S. dairy herd. According to a recent national survey, 68 percent of the U.S. dairy herd are infected with MAP, especially those cattle at big, industrial dairies, as you can see at 3:33 in my video. Ninety-five percent of operations with more than 500 cows came up positive. It’s estimated the disease costs the U.S. industry more than a billion dollars a year.

How do people become exposed? “The most important routes of access of MAP to the [human] food chain appear to be contaminated milk, milk products and meat” from infected cattle, sheep, and goats. MAP or MAP DNA has been detected in raw milk, pasteurized milk, infant formula, cheese, ice cream, muscle and organ tissues, and retail meat. We know paraTB bacteria survive pasteurization because Wisconsin researchers bought hundreds of pints of retail milk off store shelves from three of the top U.S. milk-producing states and tested for the presence of viable, meaning living, MAP bacteria. They found that 2.8 percent of the retail milk tested came back positive for live paraTB bacteria, with most brands yielding at least one positive sample. If paraTB does end up being a diabetes trigger, then “these findings indicate that retail milk [in the United States] would need to be considered as a transmission vector.” Why hasn’t the public heard about this research? Perhaps because the industry is not too keen on sharing it. Indeed, according to an article in the Journal of Dairy Science: “Fear of consumer reaction…can impede rational, open discussion of scientific studies.”

Not only is MAP a serious problem for the global livestock industry, but it also may trigger type 1 diabetes, given that paraTB bacteria have been found in the bloodstream of the majority of type 1 diabetics tested who presumably are exposed through the retail milk supply as the bacteria can survive pasteurization. But what about the meat supply? MAP has been found in beef, pork, and chicken. It’s an intestinal bug, and unfortunately, “[f]aecal contamination of the carcass in the abattoir [slaughter plant] is unavoidable…” Then, unless the meat is cooked well-done, it could harbor living MAP.

In terms of meat, “ground beef represents the greatest potential risk for harboring MAP…[as] a significant proportion originates from culled dairy cattle,” who may be culled because they have paratuberculosis. These animals may go straight into the human food chain. There also exists greater prevalence of fecal contamination and lymph nodes in ground meat, and the grinding can force the bacteria deep inside the ground beef burger. As such, “given the weight of evidence and the severity and magnitude of potential human health problems, the precautionary principle suggests that it is time to take actions to limit…human exposure to MAP.” At the very least, we should stop funneling animals known to be infected into the human food supply.

We know that milk exposure is associated with type 1 diabetes, but what about meat? As I discuss in my video Meat Consumption and the Development of Types 1 Diabetes, researchers attempted to tease out the nutritional factors that could help account for the 350-fold variation in type 1 diabetes rates around the world. Why do some parts of the world have rates hundreds of times higher than others? Yes, the more dairy populations ate, the higher their rates of childhood type 1 diabetes, but the same was found for meat, as you can see at 2:07 in my video. This gave “credibility to the speculation that the increasing dietary supply of animal protein after World War II may have contributed to the reported increasing incidence of type 1 diabetes…” Additionally, there was a negative correlation—that is, a protective correlation that you can see at 2:26 in my video—between the intake of grains and type 1 diabetes, which “may fit within the more general context of a lower prevalence of chronic diseases” among those eating more plant-based diets.

What’s more, the increase in meat consumption over time appeared to parallel the increasing incidence of type 1 diabetes. Now, we always need to be cautious about the interpretation of country-by-country comparisons. Just because a country eats a particular way doesn’t mean the individuals who get the disease ate that way. For example, a similar study looking specifically at the diets of children and adolescents between different countries “support[ed] previous research about the importance of cow’s milk and [other] animal products” in causing type 1 diabetes. But, the researchers also found that in countries where they tended to eat the most sugar, kids tended to have lower rates of the disease, as you can see at 3:18 in my video. This finding didn’t reach statistical significance since there were so few countries examined in the study, but, even if it had and even if there were other studies to back it up, there are countless factors that could be going on. Maybe in countries where people ate the least sugar, they also ate the most high fructose corn syrup or something. That’s why you always need to put it to the test. When the diets of people who actually got the disease were analyzed, increased risk of type 1 diabetes was associated with milk, sugar, bread, soda, eggs, and meat consumption.

In Sardinia, where the original link was made between paraTB and type 1 diabetes, a highly “statistically significant dose-response relationship” was found, meaning more meat meant more risk, especially during the first two years of children’s lives. So, “[h]igh meat consumption seems to be an important early in life cofactor for type 1 diabetes development,” although we needed more data.

The latest such study, which followed thousands of mother-child pairs, found that mothers eating meat during breastfeeding was associated with an increased risk of both preclinical and full-blown, clinical type 1 diabetes by the time their children reached age eight. The researchers thought it might be the glycotoxins, the AGEs found in cooked meat, which can be transferred from mother to child through breastfeeding, but they have learned that paratuberculosis bacteria can also be transferred through human breast milk. These bacteria have even been grown from the breast milk of women with Crohn’s disease, another autoimmune disease linked to paraTB bacteria exposure.


For a deeper discussion of other possibilities as to why cow’s milk consumption is linked to this autoimmune destruction of insulin production, see Does Casein in Milk Trigger Type 1 Diabetes? and Does Bovine Insulin in Milk Trigger Type 1 Diabetes?.

If we don’t drink milk, though, what about our bone health? See my videos Long-Term Vegan Bone Health and Is Milk Good for Our Bones?.

The vast majority of cases of diabetes in the United States are type 2, though. Ironically, meat may also play a role there. See my videos Why Is Meat a Risk Factor for Diabetes? and How May Plants Protect Against Diabetes? for more information.

For more on the links between milk and diabetes, see my videos Does Casein in Milk Trigger Type 1 Diabetes? and Does Bovine Insulin in Milk Trigger Diabetes?. What about treating and preventing diabetes through diet? Check out How Not to Die from Diabetes and How to Prevent Prediabetes from Turning Into Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Is Type 1 Diabetes Triggered by the Bovine Insulin in Milk?

The tight correlation among countries between the incidence of type 1 diabetes in children and cow’s milk consumption didn’t account for Iceland. Indeed, studies correlating dairy intake in children and adolescents with the incidence of type 1 diabetes deliberately excluded the Icelandic data. Why? Is it because of genetics? Perhaps, yes and no. The people of Iceland are similar genetically to other Nordic countries, but their cows are not. As I discuss in my video Does Bovine Insulin in Milk Trigger Type 1 Diabetes?, there are two main types of the cow milk protein casein: A1 and A2. Icelandic cattle, who “have been isolated from interbreeding with other cattle breeds for over 1,100 years,” are unusual in that they produce mostly A2 milk, which may explain the lower incidence of type 1 diabetes in Iceland.

Unlike A2 casein, A1 casein breaks down into casomorphin, which has opioid properties that may alter immune function, perhaps increasing susceptibility to infections that may themselves trigger type 1 diabetes. That’s what’s in the milk from the classic black-and-white patterned Holstein cows, who make up about 95 percent of the U.S. dairy herd and much of the global herd—A1 casein. This issue has even caused dairy boards to begin taking out patents on methods for selecting “nondiabetogenic” milk to avoid triggering of Type 1 diabetes. Indeed, looking only at A1 casein consumption certainly restores that tight linear relationship between milk intake and type 1 diabetes and you can see at 1:47 in the video.

These so-called ecological, or country-by-country, studies, however, primarily serve to suggest possibilities that then need to be put to the test. For example, a study was designed where hundreds of siblings of type 1 diabetics were followed for about ten years and found that those who drank a lot of milk did have about five times the risk of coming down with the disease, too. By the mid-1990s, more than a dozen such studies were done.

Overall, researchers found that early cow’s milk exposure appears to increase the risk of type 1 diabetes by about 50 percent. Those data were enough for the American Academy of Pediatrics to decide that “cow’s milk protein may be an important factor” in the initiation of the process that destroys our insulin-producing cells. The organization went on to say that the avoidance of cow’s milk protein may reduce or delay the onset of type 1 diabetes. As such, the American Academy of Pediatrics emphasizes that breast milk is best and, for those at higher risk of the disease, strongly encourages the avoidance of products containing cow’s milk protein that is intact, as opposed to hydrolyzed formula where the milk proteins are broken up into tiny pieces.

Typically, hydrolyzed formula is given to children with dairy allergies and could potentially make it less risky, but we don’t know until we put it to the test. Based on the population studies and meta-analyses of antibody studies, which suggested that “cow’s milk may serve as a trigger of Type 1 diabetes,” a pilot study was initiated the following year. Researchers wanted to see if babies at high genetic risk for the disease would be less likely to develop antibodies that would then attack their own pancreas if they drank hydrolyzed casein—that is, casein that was chopped up. The hydrolyzed formula did seem to reduce the appearance of at least one autoimmune antibody, but not two or more, which is much more predictive of the development of the disease.

Nevertheless, that was enough for the investigators to embark on the ambitious Trial to Reduce Incidence of Diabetes in Genetically at Risk, also known as the TRIGR study. This multinational, randomized prospective trial involved randomizing thousands of newborns across 15 countries. In 2010, preliminary data suggested the hydrolyzed formula may have helped, but they didn’t quite reach statistical significance, approximately meaning there was greater than a 1 in 20 chance the findings could have just been a fluke. Indeed, when the final autoimmune antibody results were published, the special hydrolyzed formula didn’t seem to help at all.

The researchers only looked at a special group of children, though—ones who were at high genetic risk with diabetes running in the family—whereas the great majority of children who get type 1 diabetes do not have any afflicted close relative. Perhaps most importantly, however, as the researchers themselves emphasized, their study wasn’t designed to test whether cow’s milk is or is not a trigger for the disease. Instead, it aimed to analyze the potential effects of the hydrolyzed casein formula. Maybe it’s not the casein, though. Maybe it’s the bovine insulin.

Insulin autoantibodies—antibodies our body produces to attack our own insulin—often appear as the first sign in prediabetic children. “Because cow’s milk contains bovine insulin,” around the same time researchers were looking into casein, another team “followed the development of insulin-binding antibodies in children fed with cow’s milk formula.” They found significantly more antibodies to bovine insulin in the cow’s milk formula group compared to the exclusively breastfed group, who may have only been exposed to cow proteins through their mom’s breast milk (if their mothers consumed dairy). Furthermore, the bovine antibodies cross-reacted with human insulin, potentially being that caught-in-the-crossfire cause triggering at least some cases of type 1 diabetes.

Of course, we can’t know for sure until we put it to the test. Researchers ran another randomized, double-blind trial, but, this time, tried a cow’s milk formula from which the bovine insulin had been removed. And, indeed, without the bovine insulin exposure, the children built up significantly fewer autoimmune antibodies. What we don’t know yet is whether this will translate into fewer cases of diabetes.


You may also want to check out:

For more on the concerns with cow’s milk exposure in infancy and childhood, see:

I’ve developed a six-part series on the role of gluten-free, casein-free diets in the treatment of autism:

What’s The Best Baby Formula? Breast milk!

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Should Plant-Based Women Supplement with DHA During Pregnancy?

A systematic review of randomized controlled trials of DHA supplementation of pregnant and breastfeeding women failed to find any clear and consistent short- or long-term benefit for psychomotor, mental, visual, or physical development. Perhaps DHA supplementation during pregnancy has no effect because the body wisely protects the growth of the baby’s brain by drawing off of maternal stores of DHA, upregulating maternal DHA synthesis, and preferentially shuttling it to the fetus. But what if moms don’t start out with large maternal stores? In other words, maybe DHA failed to help women who were already getting enough, but perhaps women with very low intakes would benefit from DHA supplementation. My video Should Vegan Women Supplement with DHA During Pregnancy? explores the evidence available to date.

It’s interesting to note that, by 1978, researchers already were suggesting a plant-based diet as the diet of choice in the treatment of our number-one killer, heart disease, but babies breastfed by vegan moms had significantly less DHA in their bloodstreams, presumably because the moms had significantly less DHA in their breast milk.

The question is whether these differences are of any consequence. The growth and development of vegan and vegetarian born children are normal as long as they’re getting their B12, and “[t]here is no evidence that neural or intellectual functions are impaired.” In fact, the two studies we have on kids in vegetarian communities showed they had higher IQs, though that may be because their parents tended to be better educated. However, even though the kids seemed fine, that doesn’t rule out the possibility that there may be some “subtle differences…in visual or neural functioning.”

It would be interesting to compare the function of babies getting vegan breast milk levels versus general population levels. In one of the studies I profile in my video, it shows that vegans hit a level of 14, vegetarians 30, and omnivores 37. Another study compared 0 to 32, 64, and 96, and, though 32 worked better than 0, more than 32 didn’t add anything. This could explain why the general population at 37 doesn’t benefit from additional DHA supplementation. But what about down at 14? Most studies at that level show no advantage over 0, though one study found a benefit supplementing at as low as 5, but that doesn’t help us.

Just because babies breastfed by vegan moms have significantly lower DHA levels in the blood, that doesn’t necessarily mean they have lower levels in their brain, which is where it counts. What we need is a randomized, controlled trial in non-fish-eaters of DHA supplementation. Until then, it’s going to remain uncertain. So, what should pregnant and breastfeeding women who avoid fish do in the meanwhile? Low intake of DHA doesn’t “necessarily equate with fetal DHA inadequacy,” but new data suggest that some infants may not be getting enough and could benefit from their moms supplementing. Given this, I recommend pregnant and breastfeeding women on plant-based diets to follow the consensus guidelines to get about 200mg of preformed DHA from an uncontaminated source, like algae oil, which is probably the best combination for all women given the state of our world to minimize exposure to toxic pollutants such as dioxins, PCBs, and mercury. 


To gain a better understanding of why algae oil is better than purified fish oil, I encourage you to watch my video Should Pregnant and Breastfeeding Women Take DHA.

I’ve discussed concerns about pollutants in seafood during pregnancy in a number of my videos:

Finally, for more on taking long-chain omega-3s to protect your heart, see: 

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations: