Eating to Block Lead Absorption

Intake of certain nutrients has been associated with lower lead levels in the body. For example, women with higher intake of thiamine, also called vitamin B1, tended to have lower blood lead levels, and the same was found for lead-exposed steel workers—and not just with thiamine, as “content of dietary fiber, iron, or thiamine intake each correlated inversely with blood lead concentrations in workers…” The thinking is that the fiber might glom onto the lead and flush it out of the body, the iron would inhibit the lead absorption, and the thiamine may accelerate lead removal through the bile. So, researchers suggest that eating lots of iron, fiber and especially thiamine-rich foods “may induce rapid removal and excretion of the lead from the tissues.” But thiamine’s never been put to the test by giving it to people to see if their lead levels drop. The closest I could find is a thiamine intervention for lead-intoxicated goats.
 

And much of the fiber data are just from test tube studies. In one, for example, researchers used simulated intestinal conditions, complete with “flasks” of feces, and both soluble and insoluble dietary fiber were able to bind up large amounts of mercury, cadmium, and lead to such an extent that they may have been able to block absorption in the small intestine. But, when our good gut flora then eat the fiber, some of the heavy metals may be re-released down in the colon, so it’s not completely fail safe. And, as with thiamine, there haven’t been controlled human studies.

But where is thiamine found? At 1:47 in my video How to Lower Lead Levels with Diet: Thiamine, Fiber, Iron, Fat, Fasting?, I feature a list of some of the healthiest sources of thiamine-rich foods that also contain fiber, which include highly concentrated, super healthy foods like beans and greens—foods we should all be eating anyway. So, even if thiamine- and fiber-rich foods don’t actually lower lead levels, we’ll still end up healthier.

What happened when iron was put to the test? It failed to improve the cognitive performance of lead-exposed children and failed to improve behavior or ADH symptoms, which is no surprise, because it also failed to bring down lead levels, as did zinc supplementation. It turns out that while iron may limit the absorption of lead, “it may also inhibit excretion of previously absorbed lead” that’s already in your body. What’s more, iron may not even inhibit lead absorption in the first place. That was based on rodent studies, and it turns out we’re not rodents.

We get the same story with zinc. It may have helped to protect rat testicles, but didn’t seem to help human children. “Nevertheless, iron is routinely prescribed in children with lead poisoning.” But, “given the lack of scientific evidence supporting the use of iron [supplementation] in…children with lead poisoning, its routine use should be re-examined.” Though, obviously, supplementation may help if you have an iron deficiency.

High fat intake has been identified as a nutritional condition that makes things worse for lead-exposed children. In fact, dietary fat has been associated with higher lead levels in cross-sectional, snapshot-in-time type studies, and there is a plausible biological mechanism: Dietary fat may boost lead absorption by stimulating extra bile, which in turn may contribute to lead absorption, but you really don’t know until you put it to the test.

In addition to testing iron, researchers also tested fat. They gave a group of intrepid volunteers a cocktail of radioactive lead and then, with a Geiger counter, measured how much radiation the subjects retained in their bodies. Drinking the lead with iron or zinc didn’t change anything, but adding about two teaspoons of vegetable oil boosted lead absorption into the body from about 60 percent up to around 75 percent, as you can see at 4:17 in my video.

The only thing that seemed to help, dropping lead absorption down to about 40 percent, was eating a light meal with the lead drink. What was the meal? Coffee and a donut. I think this is the first donut intervention I’ve ever seen with a positive outcome! Could it have been the coffee? Unlikely, because if anything, coffee drinking has been associated with a tiny increase in blood lead levels. If fat makes things worse, and the one sugar they tried didn’t help, the researchers figured that what made the difference was just eating food—any food—and not taking in lead on an empty stomach. And, indeed, if you repeat the study with a whole meal, lead absorption doesn’t just drop from 60 percent to 40 percent—it drops all the way down to just 4 percent! That’s extraordinary. That means it’s 15 times worse to ingest lead on an empty stomach.

Lead given 12 hours before a meal was absorbed at about 60 percent, so most of it was absorbed. When the same amount of lead was given three hours after a meal and also seven hours after a meal, most of it was absorbed at those times, too. But, if you get some food in your stomach within a few hours of lead exposure, you can suppress the absorption of some or nearly all of the lead you ingested, which you can see at 0:11 in my video How to Lower Lead Levels with Diet: Breakfast, Whole Grains, Milk, Tofu?.

This is why it’s critical to get the lead out of our tap water. Although it’s estimated that most of our lead exposure comes from food, rather than water, it’s not what we eat that matters, but what we absorb. If 90 percent of the lead in food is blocked from absorption by the very fact that it’s in food, 10 to 20 times more lead could be absorbed into your bloodstream simply by consuming the same amount of lead in water drank on an empty stomach.

And, since children empty their stomachs faster than adults because kids “have more rapid gastric emptying times,” the timing of meals may be even more important. With little tummies emptying in as few as two hours after a meal, offering midmorning and midafternoon snacks in addition to breakfast and regular meals may cut down on lead absorption in a contaminated environment. And, of course, we should ensure that children wash their hands prior to eating.

So, do preschoolers who eat breakfast have lower levels of lead in their blood? In the first study of its kind, researchers found that, indeed, children who ate breakfast regularly did appear to have lower lead levels, supporting recommendations to provide regular meals and snacks to young children at risk for lead exposure.

Is there anything in food that’s particularly protective? Researchers tested all sorts of foods to find out, and it turns out the “effect of a meal was probably largely due to its content of calcium and phosphate salts but lead uptake was probably further reduced by phytate which is plentiful in whole cereals,” but if calcium and phosphates are protective, you’d think dairy would work wonders. And, indeed, they started giving milk “to workers to prevent lead exposure” ever since calcium was shown to inhibit lead absorption in rats. But, in humans, there’s something in milk that appeared to increase lead uptake, and it wasn’t the fat because they found the same problem with skim milk.

“For over a century milk was recommended unreservedly to counteract lead poisoning in industry,” but this practice was abandoned in the middle of the last century once we learned that milk’s “overall effect is to promote the absorption of lead from the intestinal tract.” What’s the agent in milk that promotes the absorption of lead from the gut? It may be the milk sugar, lactose, though the “mechanism by which lactose enhances lead absorption is not clear.”

The bottom line? “In the past…milk was used as a prophylactic agent to protect workers in the lead industry. Recent studies, however, suggest that this practice is unjustified and may even be harmful.” So, giving people whole grains may offer greater protection against lead uptake.

However, the most potently calcium and phytate-rich food would be tofu. Isolated soy phytonutrients may have a neuroprotective effect, at least this was the case in petri dish-type studies. As you can see at 3:45 in my video, if you add a little lead to nerve cells, you can kill off about 40 percent of them, but if you then give more and more soy phytonutrients, you can ameliorate some of the damage. This is thought to be an antioxidant effect. If you add lead to nerve cells, you can get a big burst of free radicals, but less and less as you drip on more soy compounds.

Nevertheless, even if this worked outside of a lab, cutting down on the toxic effects of lead is nice, but cutting down on the levels of lead in your body is even better. “Because tofu has high content of both calcium and phytic acid phytate…it is biologically plausible that tofu may inhibit lead absorption and retention, thus reducing blood lead levels.” But you don’t know, until you put it to the test.

Tofu consumption and blood lead levels were determined for about a thousand men and women in China. For every nine or so ounces of tofu consumed a week, there appeared to be about four percent less lead in their bloodstream. Those who ate up to two and a half ounces a day had only half the odds of having elevated lead levels, compared to those eating less than about nine ounces a week. Those consuming nearly four ounces a day appeared to cut their odds by more than 80 percent. This was just a cross-sectional study, or snapshot in time, so it can’t prove cause and effect. What you need is an interventional study where you randomize people into two groups, giving half of them some food to see if it drives down lead levels. I cover this in my video Best Food for Lead Poisoning: Chlorella, Cilantro, Tomatoes, Moringa?.


Where does all this lead exposure come from anyway? Check out the first five videos on this series:

For more about blocking lead absorption, as well as what to eat to help rid yourself of the lead you’ve already built up, see:

Or, even better, don’t get exposed in the first place. Find out more in these videos:

Some of my other videos on lead include:

And what about lead levels in women? See:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

 

What Explains the Egg-Cancer Connection

The reason egg consumption is associated with elevated cancer risk may be the TMAO, considered the “smoking gun” of microbiome-disease interactions.

“We are walking communities comprised not only of a Homo sapiens host, but also of trillions of symbiotic commensal microorganisms within the gut and on every other surface of our bodies.” There are more bacterial cells in our gut than there are human cells in our entire body. In fact, only about 10 percent of the DNA in our body is human. The rest is in our microbiome, the microbes with whom we share with the “walking community” we call our body. What do they do?

Our gut bacteria microbiota “serve as a filter for our largest environmental exposure—what we eat”—and, “technically speaking, food is a foreign object that we take into our bodies” by the pound every day. The “microbial community within each of us significantly influences how we experience a meal…Hence, our metabolism and absorption of food occurs through” this filter of bacteria.

However, as you can see at 1:22 in my video How Our Gut Bacteria Can Use Eggs to Accelerate Cancer, if we eat a lot of meat, including poultry and fish, milk, cheese, and eggs, we can foster the growth of bacteria that convert the choline and carnitine in those foods into trimethylamine (TMA), which can be oxidized into TMAO and wreak havoc on our arteries, increasing our risk of heart attack, stroke, and death.

We’ve known about this “troublesome” transformation from choline into trimethylamine for more than 40 years, but that was way before we learned about the heart disease connection. Why were researchers concerned back then? Because these methylamines might form nitrosamines, which have “marked carcinogenic activity”—cancer-causing activity. So where is choline found in our diet? Mostly from meat, eggs, dairy, and refined grains. The link between meat and cancer probably wouldn’t surprise anyone. In fact, just due to the industrial pollutants, like PCBs, children probably shouldn’t eat more than about five servings a month of meats like beef, pork, or chicken combined. But, what about cancer and eggs?

Studies going back to the 1970s hinted at a correlation between eggs and colon cancer, as you can see at 2:45 in my video. That was based just on so-called ecological data, though, showing that countries eating more eggs tended to have higher cancer rates, but that could be due to a million factors. It needed to be put to the test.

This testing started in the 80s, and, by the 1990s, 15 studies had been published, of which 10 suggested “a direct association” between egg consumption and colorectal cancer, “whereas five found no association.” By 2014, dozens more studies had been published, confirming that eggs may indeed be playing a role in the development of colon cancer, though no relationship was discovered between egg consumption and the development of precancerous polyps, which “suggested that egg consumption might be involved in the promotional” stage of cancer growth—accelerating cancer growth—rather than initiating the cancer in the first place.

This brings us to 2015. Perhaps it’s the TMAO made from the choline in meat and eggs that’s promoting cancer growth. Indeed, in the Women’s Health Initiative study, women with the highest TMAO levels in their blood had approximately three times greater risk of rectal cancer, suggesting that TMAO levels “may serve as a potential predictor of increased colorectal cancer risk.”

As you can see at 4:17 in my video, though there may be more evidence for elevated breast cancer risk with egg consumption than prostate cancer risk, the only other study to date on TMAO and cancer looked at prostate cancer and did indeed find a higher risk.

“Diet has long been considered a primary factor in health; however, with the microbiome revolution of the past decade, we have begun to understand how diet can” affect the back and forth between us and the rest of us inside, and the whole TMAO story is “a smoking gun” in gut bacteria-disease interactions.

Since choline and carnitine are the primary sources of TMAO production, the logical intervention strategy might be to reduce meat, dairy, and egg consumption. And, if we eat plant-based for long enough, we can actually change our gut microbial communities such that we may not be able to make TMAO even if we try.

“The theory of ‘you are what you eat’ finally is supported by scientific evidence.” We may not have to eat healthy for long, though. Soon, Big Pharma hopes, “we may yet ‘drug the microbiome’…as a way of promoting cardiovascular health.”

What did the egg industry do in response to this information? Distort the scientific record. See my video Egg Industry Response to Choline and TMAO.


This is not the first time the egg industry has been caught in the act. See, for example:

For background on TMAO see my original coverage in Carnitine, Choline, Cancer, and Cholesterol: The TMAO Connection and then find out How to Reduce Your TMAO Levels. Also, see: Flashback Friday: How to Reduce Your TMAO Levels.

This is all part of the microbiome revolution in medicine, the underappreciated role our gut flora play in our health. For more, see: 

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

How to Foster a Healthy Gut Flora

What’s more important: probiotics or prebiotics? And where can we best get them?

“Virtually every day we are all confronted with the activity of our intestine, and it is no surprise that at least some of us have developed a fascination for our intestinal condition and its relation to health and disease.”

“Over the last years the intestinal microbiota [our gut flora] has been identified as a fascinating ‘new organ’” with all sorts of functions. Well, if the bacteria in our gut make up an entire, separate organ inside our body, what about doing an organ transplant? I discuss this in my video How to Become a Fecal Transplant Super Donor.

What would happen if you transferred intestinal bacteria from lean donors into obese subjects? Researchers figured that rebalancing the obesity-causing bacteria with an infusion of gut bacteria from a lean donor might help. They had wanted the study to be placebo-controlled, which, for drugs is easy, because the control subjects can just be given a sugar pill. But, when you’re inserting a tube down people’s throats and transplanting feces, what do you use as the placebo—or poocebo, if you will? Both the donors and the subjects brought in fresh stools, and the subjects were randomized to either get a donor’s stool or their own collected feces. So, the placebo was simply getting their own stool back.

What happened? As you can see at 1:32 in my video, the insulin sensitivity of the skinny donors was up around 50, which is a good thing. High insulin sensitivity means a low level of insulin resistance, which is the cause of both type 2 diabetes and prediabetes. The obese subjects started out around 20 and, after an infusion of their own feces, stayed around 20. The group of obese donors getting the skinny fecal infusion similarly started out low but then shot up near to where the slim folks were.

It’s interesting that not all lean donors’ stools conveyed the same effect on insulin sensitivity. Some donors, the so-called super-fecal donors, had very significant effects, whereas others had little or no effect, as you can see at 2:02 in my video. It turns out this super-donor effect is most probably conveyed by the amounts of short-chain fatty acid-producing intestinal bacteria in their feces. These are the food bacteria that thrive off of the fiber we eat. The short-chain fatty acids produced by fiber-eating bacteria may contribute to the release of gut hormones that may be the cause of this beneficial, improved insulin sensitivity.

“The use of fecal transplantation has recently attracted considerable attention because of its success in treatments as well as its capacity to provide cause–effect relations,” that is, cause-and-effect evidence that the bacteria we have in our gut can affect our metabolism. Within a few months, however, the bacterial composition returned back to baseline, so the effects on the obese subjects were temporary.

We can get similar benefits by just feeding what few good gut bacteria we may already have. If you have a house full of rabbits and feed them pork rinds, all the bunnies will die. Yes, you can repopulate your house by infusing new bunnies, but if you keep feeding them pork rinds, they’ll eventually die off as well. Instead, even if you start off with just a few rabbits but if you feed them what they’re meant to eat, they’ll grow and multiply, and your house will soon be full of fiber-eating bunnies. Fecal transplants and probiotics are only temporary fixes if we keep putting the wrong fuel into our guts. But, by eating prebiotics, such as fiber, which means “increasing whole plant food consumption,” we may select for—and foster the growth of—our own good bacteria.

However, such effects may abate once the high-fiber intake ceases. Therefore, our dietary habits should include a continuous consumption of large quantities of high-fiber foods to improve our health. Otherwise, we may be starving our microbial selves.


The microbiome is one of the most exciting research areas in medicine these days. For more information, see, for example:

For more on health sources of prebiotics, check out:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations: