How to Treat Polycystic Ovary Syndrome (PCOS) with Diet

Given the role that oxidant free radicals are thought to play in aging and disease, one reason fruits and vegetables may be so good for us is that they contain antioxidant compounds. As you can see at 0:20 in my video Benefits of Marjoram for Polycystic Ovary Syndrome (PCOS), different vegetables and herbs have different antioxidant content. When making a salad, for example, spinach, arugula, or red leaf lettuce may provide twice the antioxidants as butterhead lettuce, and choosing purple cabbage over green, or red onions over white can also boost the salad’s antioxidant power.

Fresh herbs are so powerful that even a small amount may double or even quadruple the antioxidant power of the entire meal. For instance, as you can see at 0:50 in my video, the total antioxidants in a simple salad of lettuce and tomato jump up by adding just a tablespoon of lemon balm leaves or half a tablespoon of oregano or mint. Adding marjoram, thyme, or sage not only adds great flavor to the salad, but effectively quadruples the antioxidant content at the same time, and adding a little fresh garlic or ginger to the dressing ups the antioxidant power even more.

Herbs are so antioxidant-rich that researchers decided to see if they might be able to reduce the DNA-damaging effects of radiation. Radioactive iodine is sometimes given to people with overactive thyroid glands or thyroid cancer to destroy part of the gland or take care of any remaining tumor cells after surgery. For days after the isotope injection, patients become so radioactive they are advised not to kiss or sleep close to anyone, including their pets, and if they breathe on a phone, they’re advised to wipe it “carefully” or cover it “with an easily removed plastic bag.” Other recommendations include “avoid[ing] splatter of radioactive urine,” not going near your kids, and basically just staying away from others as much as possible.

The treatment can be very effective, but all that radiation exposure appears to increase the risk of developing new cancers later on. In order to prevent the DNA damage associated with this treatment, researchers tested the ability of oregano to protect chromosomes of human blood cells in vitro from exposure to radioactive iodine. As you can see at 2:25 in my video, at baseline, about 1 in 100 of our blood cells show evidence of chromosomal damage. If radioactive iodine is added, though, it’s more like 1 in 8. What happens if, in addition to the radiation, increasing amounts of oregano extract are added? Chromosome damage is reduced by as much 70 percent. Researchers concluded that oregano extract “significantly protects” against DNA damage induced by the radioactive iodine in white blood cells. This was all done outside the body, though, which the researchers justified by saying it wouldn’t be particularly ethical to irradiate people for experimental research. True, but millions of people have been irradiated for treatment, and researchers could have studied them or, at the very least, they could have just had people eat the oregano and then irradiate their blood in vitro to model the amount of oregano compounds that actually make it into the bloodstream.

Other in vitro studies on oregano are similarly unsatisfying. In a comparison of the effects of various spice extracts, including bay leaves, fennel, lavender, oregano, paprika, parsley, rosemary, and thyme, oregano beat out all but bay leaves in its ability to suppress cervical cancer cell growth in vitro while leaving normal cells alone. But people tend to use oregano orally—that is, they typically eat it—so the relevance of these results are not clear.

Similarly, marjoram, an herb closely related to oregano, can suppress the growth of individual breast cancer cells in a petri dish, as you can see at 3:53 in my video, and even effectively whole human breast tumors grown in chicken eggs, which is something I’ve never seen before. Are there any clinical trials on oregano-family herbs on actual people? The only such clinical, randomized, control study I could find was a study on how marjoram tea affects the hormonal profile of women with polycystic ovary syndrome (PCOS). The most common cause of female fertility problems, PCOS affects up to one in eight young women and is characterized by excessive male hormones, resulting in excess body or facial hair, menstrual irregularities, and cysts in one’s ovaries that show up on ultrasounds.

Evidently, traditional medicine practitioners reported marjoram tea was beneficial for PCOS, but it had never been put to the test…until now. Drinking two daily cups of marjoram tea versus a placebo tea for one month did seem to beneficially affect the subjects’ hormonal profiles, which seems to offer credence to the claims of the traditional medicine practitioners. However, the study didn’t last long enough to confirm that actual symptoms improved as well, which is really what we care about.

Is there anything that’s been shown to help? Well, reducing one’s intake of dietary glycotoxins may help prevent and treat the disease. Over the past 2 decades there has been increasing evidence supporting an important contribution from food-derived advanced glycation end products (AGEs)…[to] increased oxidative stress and inflammation, processes that play a major role in the causation of chronic diseases,” potentially including polycystic ovary syndrome (PCOS). Women with PCOS tend to have nearly twice the circulating AGE levels in their bloodstream, as you can see at 0:33 in my video Best Foods for Polycystic Ovary Syndrome (PCOS). 

PCOS may be the most common hormonal abnormality among young women in the United States and is a common cause of infertility, menstrual dysfunction, and excess facial and body hair. The prevalence of obesity is also higher in women with PCOS. Since the highest AGE levels are found in broiled, grilled, fried, and roasted foods of “mostly animal origin,” is it possible that this causal chain starts with a bad diet? For instance, maybe eating lots of fried chicken leads to obesity, which in turn leads to PCOS. In that case, perhaps what we eat is only indirectly related to PCOS through weight gain. No, because the same link between high AGE levels and PCOS was found in lean women as well.

“As chronic inflammation and increased oxidative stress have been incriminated in the pathophysiology [or disease process] of PCOS, the role of AGEs as inflammatory and oxidant mediators, may be linked with the metabolic and reproductive abnormalities of the syndrome.” Further, the buildup of AGE inside polycystic ovaries themselves suggests a potential role of AGEs contributing to the actual disease process, beyond just some of its consequences.

RAGE is highly expressed in ovarian tissues. The receptor in the body for these advanced glycation end products, the “R” in RAGE, is concentrated in the ovaries, which may be particularly sensitive to its effect. So, AGEs might indeed be contributing to the cause of PCOS and infertility.

Does this mean we should just cut down on AGE-rich foods, such as meat, cheese, and eggs? Or hey, why not come up with drugs that block AGE absorption? We know AGEs have been implicated in the development of many chronic diseases. Specifically, food-derived AGEs play an important role because diet is a major source of these pro-inflammatory AGEs. Indeed, cutting down on these dietary glycotoxins reduces the inflammatory response, but the “argument is often made that stewed chicken would be less tasty than fried chicken…” Why not have your KFC and eat it, too? Just take an AGE-absorption blocking drug every time you eat it to reduce the absorption of the toxins. What’s more, it actually lowers AGE blood levels. This oral absorbent drug, AST-120, is just a preparation of activated charcoal, like what’s used for drug overdoses and when people are poisoned. I’m sure if you took some ipecac with your KFC, your levels would go down, too.

There’s another way to reduce absorption of AGEs, and that’s by reducing your intake in the first place. It’s simple, safe, and feasible. The first step is to stop smoking. The glycotoxins in cigarette smoke may contribute to increased heart disease and cancer in smokers. Then, decrease your intake of high-AGE foods, increase your intake of foods that may help pull AGEs out of your system, like mushrooms, and eat foods high in antioxidants, like berries, herbs, and spices. “Dietary AGE intake can be easily decreased by simply changing the method of cooking from a high dry heat application to a low heat and high humidity…” In other words, move away from broiling, searing, and frying to more stewing, steaming, and boiling.

What we eat, however, may be more important than how we cook it. At 4:00 in my video, I include a table showing the amounts of AGEs in various foods. For instance, boiled chicken contains less than half the glycotoxins of roasted chicken, but even deep-fried potatoes have less than boiled meat. We can also eat foods raw, which doesn’t work as well as for blood pudding, but raw nuts and nut butters may contain about 30 times less glycotoxins than roasted, and we can avoid high-AGE processed foods, like puffed, shredded, and flaked breakfast cereals.

Why does it matter? Because study after study has shown that switching to a low-AGE diet can lower the inflammation within our bodies. Even just a single meal high in AGEs can profoundly impair our arterial function within just two hours of consumption. At 4:54 in my video, you can see the difference between a meal of fried or broiled chicken breast and veggies compared with steamed or boiled chicken breast and veggies. Same ingredients, just different cooking methods. Even a steamed or boiled chicken meal can still impair arterial function, but significantly less than fried or broiled.

“Interestingly, the amount of AGEs administered [to subjects] during the HAGE [high-AGE] intervention was similar to the average estimated daily intake by the general population,” who typically follow the standard American diet. This is why we can decrease inflammation in people by putting them on a low-AGE diet, yet an increase in inflammation is less apparent when subjects switch from their regular diet to one high in AGEs. Indeed, they were already eating a high-AGE diet with so many of these glycotoxins.

Do we have evidence that reducing AGE intake actually helps with PCOS? Yes. Within just two months, researchers found differences from subjects’ baseline diets switched to a high-AGE diet and then to a low-AGE diet, with parallel changes in insulin sensitivity, oxidative stress, and hormonal status, as seen at 5:54 in my video. The take-home learning? Those with PCOS may want to try a low-AGE diet, which, in the study, meant restricting meat to once a week and eating it only boiled, poached, stewed, or steamed, as well as cutting out fast-food-type fare and soda.

What if instead of eating steamed chicken, we ate no meat at all? Rather than measuring blood levels, which vary with each meal, we can measure the level of glycotoxins stuck in our body tissues over time with a high-tech device that measures the amount of light our skin gives off because AGEs are fluorescent. And, not surprisingly, this turns out to be a strong predictor of overall mortality. So, the lower our levels, the better. The “one factor that was consistently associated with reduced [skin fluorescence]: a vegetarian diet.” This “suggests that a vegetarian diet may reduce exposure to preformed dietary AGE…potentially reduc[ing] tissue AGE,” as well as chronic disease risk


What’s so great about antioxidants? See my videos:

Just how many antioxidants do we need? Check out:

For a few simple tips on how to quickly boost the antioxidant content of your food with herbs and spices, see my video Antioxidants in a Pinch.

I touched on the benefits of spearmint tea for PCOS in Enhancing Athletic Performance with Peppermint. Another sorely under-recognized gynecological issue is endometriosis, which I discuss in How to Treat Endometriosis with Seaweed.

Because of AGEs, I no longer toast nuts or buy roasted nut butters, which is disappointing because I really enjoy those flavors so much more than untoasted and unroasted nuts. But, as Dr. McDougall likes to say, nothing tastes as good as healthy feels. For more on why it’s important to minimize our exposure to these toxic compounds, see:

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

 

 

Topical Green Tea for Acne and Fungal Infections

Which plant should we use for which skin disease? That’s the topic of my video Natural Treatment for Acne and Fungal Infections. Thousands of studies have been published to date about the health effects of green tea, but it wasn’t until fairly recently that researchers began to look at the possibility of using green tea for the prevention and treatment of infections. Patents have been taken out on the antibacterial, antifungal, and antiviral properties of tea. Let’s review some of the evidence.

In terms of fungal infections, green tea compounds have demonstrated “potent antifungal activity” against the primary cause of athlete’s foot, fungal nail infections, jock itch, and ringworm—comparable, in some cases, to powerful antifungal drugs like fluconazole. This was shown in a petri dish, though. How about a green tea footbath for athlete’s foot fungus between the toes? Evidently, tea leaves were once used as a folk remedy for the fungus, so why not put it to the test? Indeed, a once-a-day, 15-minute dilute green tea footbath led to a significant improvement in symptoms compared to controls.

Green tea baths also appeared to help with fungus-associated atopic dermatitis, though there was no control group in that study, and a full-strength green tea may help clear candida yeast from poorly cleaned dentures. What about the bacteria that cause plaque and gingivitis? Even a 2% green tea mouthwash was found to be effective. Yes, you should be able to control plaque just with proper brushing and flossing—with an emphasis on “proper.” Most people don’t brush for the recommended four minutes a day, so a dilute green tea mouthwash may help.

In terms of plaque bacteria-killing ability, green tea was beaten out by a “garlic with lime mouth rinse,” but I think I’ll just stick to green tea, especially when green tea appears to not only kill plaque bugs directly but also boost the antibacterial capacity of saliva after you drink it.

What about green tea for acne? Six weeks of a 2% green tea lotion cut the number of pimples by more than half and significantly reduced the severity, as you can see at 2:48 in my video, making it a cheap, effective treatment for acne.

Impetigo is another bacterial skin infection that can affect the face, but a tea ointment can affect an 80 percent cure rate, on par with antibiotics given topically or orally.

What about bladder infections? We know a certain concentration of green tea compounds can kill the type of E. coli that causes urinary tract infections. The question then becomes how much tea do you have to drink to achieve those concentrations in your bladder? Not much, it turns out. Just one cup of tea might have an effect, but you may need to space out multiple cups over the day because it gets cleared out of your system within about eight hours, as you can see at 3:45 in my video.

So, where do we stand now? The test tube data look promising, but there has yet to be a single study to put it to the test. At this point, green tea should just be used as an adjunct therapy for bladder infections. But, with emerging multidrug-resistant organisms, green tea certainly holds potential.

Wait a moment. If green tea is so good at killing bacteria, might we be killing the good bacteria in our gut when we drink it? No. That’s what’s so amazing. “It has also been shown that green tea has no effect over intestinal flora, which is a great advantage against other bactericidal [bacteria-killing] agents.” But that may not actually be true. Drinking green tea may actually boost the levels of our good bacteria by acting as a prebiotic, thereby improving the colon environment, so it may actually have some effect on our gut flora after all, but it appears to be all good.


Drinking tea with meals may impair iron absorption, so it’s better to drink it between meals. For more on green tea, one of my favorite beverages, along with water and hibiscus tea, see:

For more on acne, check out:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Garlic Powder to Lower Lead Levels

There are so-called chelation drugs that can be taken for acute, life-threatening lead poisoning—for instance if your two-year-old swallowed one of the little lead weights her grandma was using while sewing curtains and the doctor happened to miss it on x-ray, so it stayed lodged inside her until she died with a blood lead level of 283 mcg/dcl, a case I discuss in my video Best Foods for Lead Poisoning: Chlorella, Cilantro, Tomatoes, Moringa?.

However, for lower grade, chronic lead poisoning, such as at levels under 45 mg/dL, there were no clear guidance as to whether these chelation drugs were effective. When they were put to the test, the drugs failed to bring down lead levels long term. Even when they worked initially, in dose after dose, the lead apparently continued to seep from the patients’ bones, and, by the end of the year, they ended up with the same lead levels as the sugar pill placebo group, as you can see at 0:50 in my video. It was no surprise, then, that even though blood lead levels dipped at the beginning, researchers found no improvements in cognitive function or development.

Since much of lead poisoning is preventable and the drugs don’t seem to work in most cases, that just underscores the need “to protect children from exposure to lead in the first place.” Despite the medical profession’s “best intentions to do something to help these kids…drug therapy is not the answer.” Yes, we need to redouble efforts to prevent lead poisoning in the first place, but what can we do for the kids who’ve already been exposed?

The currently approved method, these chelating drugs that bind and remove lead from our tissues, “lack[s]…safety and efficacy when conventional chelating agents are used.” So, what about dietary approaches? Plants produce phytochelatins. All higher plants possess the capacity to synthesize compounds that bind up heavy metals to protect themselves from the harmful effects, so what if we ate the plants? “Unlike other forms of treatment (e.g., pharmacotherapy with drugs), nutritional strategies carry the promise of a natural form of therapy that would presumably be cheap and with few to no side effects.” Yes, but would it work when the drugs didn’t?

We had learned that a meal could considerably cut down on lead absorption, but “the particular components of food intake that so dramatically reduce lead absorption” were uncertain at the time. Although the calcium content of the meal appeared to be part of it, milk didn’t seem to help and even made things worse. What about calcium supplements? Some assert that calcium supplements may help in reducing lead absorption in children, but “recommendations…must be based on evidence rather than conviction.” What’s more, those assertions are based in part on studies on rodents, and differences in calcium absorption and balance between rats and humans make extrapolation tricky. What you have to do is put it to the test. Researchers found that even an extra whopping 1,800 mg of calcium per day had no effect on blood lead levels. Therefore, the evidence doesn’t support conclusions that calcium supplements help.

What about whole foods? Reviews of dietary strategies to treat lead toxicity say to eat lots of tomatoes, berries, onions, garlic, and grapes, as they are natural antagonists to lead toxicity and therefore should be consumed on a regular basis. Remember those phytochelatins? Perhaps eating plants might help detoxify the lead in our own bodies or the bodies of those we eat.

These natural phytochelatin compounds work so well that we can use them to clean up pollution. For example, the green algae chlorella can suck up lead and hold onto it, so what if we ate it? If it can clean up polluted bodies of water, might it clean up our own polluted bodies? We don’t know, because we only have studies on mice, not men and women.

So, when you hear how chlorella detoxifies, they’re talking about the detoxification of rat testicles. Yes, a little sprinkle of chlorella might help your pet rat, or perhaps you could give them some black cumin seeds or give them a sprig of cilantro, but when you hear how cilantro detoxifies against heavy metals, I presume you don’t expect the researchers to be talking about studies in rodents. If we’re interested in science protecting our children, not just their pets, we’re out of luck.

The same is true with moringa, tomatoes, flaxseed oil, and sesame seed oil, as well as black grapes, and black, white, green, and red tea. There are simply no human studies to guide us.

Dietary strategies for the treatment of lead toxicity are often based on rodent studies, but, for tofu, at least, there was a population study of people that showed lower lead levels in men and women who ate more tofu. The researchers controlled for a whole bunch of factors, so it’s not as if tofu lovers were protected just because they smoked less or ate less meat, but you can’t control for everything.

Ideally, we’d have a randomized, placebo-controlled study. Researchers would take a group of people exposed to lead, split them into two groups, with half given food and the other half given some kind of identical placebo food, and see what happens. It’s easy to do this with drugs because you just use look-alike sugar pills as placebos so people don’t know which group they’re in, but how do you make placebo food? One way to do disguised food interventions is to use foods that are so potent they can be stuffed into a pill—like garlic. There had been various studies measuring the effects of garlic in rats and looking at garlic as a potential antidote for lead intoxication distributed among different mouse organs, but who eats mouse organs? One animal study did have some direct human relevance, though, looking at the effect of garlic on lead content in chicken tissues. The purpose was to “explore the possible use of garlic to clean up lead contents in chickens which”—like all of us on planet Earth—“had been exposed to lead pollution and consequently help to minimize the hazard” of lead-polluted chicken meat.

And…it worked! As you can see at 1:59 in my video Best Food for Lead Poisoning: Garlic, feeding garlic to chickens reduced lead levels in the “edible mass of chicken” by up to 75 percent or more. Because we live in a polluted world, even if you don’t give the chickens lead and raise them on distilled water, they still end up with some lead in their meat and giblets. But, if you actively feed them lead for a week, the levels get really high. When you give them the same amount of lead with a little garlic added, however, much less lead accumulates in their bodies.

What’s even more astonishing is that when researchers gave them the same amount of lead—but this time waited a week before giving them the garlic—it worked even better. “The value of garlic in reducing lead concentrations…was more pronounced when garlic was given as a post-treatment following the cessation of lead administration”—that is, after the lead was stopped and had already built up in their tissues. We used to think that “the beneficial effect of garlic against lead toxicity was primarily due to a reaction between lead and sulfur compounds in garlic” that would glom on to lead in the intestinal tract and flush it out of the body. But, what the study showed is that garlic appears to contain compounds that can actually pull lead not only out of the intestinal contents, but also out of the tissues of the body. So, the “results indicate that garlic contain chelating compounds capable of enhancing elimination of lead,” and “garlic feeding can be exploited to safeguard human consumers by minimizing lead concentrations in meat….”

If garlic is so effective at pulling lead out of chickens’ bodies, why not more directly exploit “garlic feeding” by eating it ourselves? Well, there had never been a study on the ability of garlic to help lead-exposed humans until…2012? (Actually, I’m embarrassed to say I missed it when the study was first published. That was back when I was just getting NutritionFacts.org up and running. Now that we have staff and a whole research team, hopefully important studies like this won’t slip through the cracks in the future.)

The study was a head-to-head comparison of the therapeutic effects of garlic versus a chelation therapy drug called D-penicillamine. One hundred and seventeen workers exposed to lead in the car battery industry were randomly assigned into one of two groups and, three times a day for one month, either got the drug or an eighth of a teaspoon of garlic powder compressed into a tablet, which is about the equivalent of two cloves of fresh garlic a day. As expected, the chelation drug reduced blood lead levels by about 20 percent—but so did the garlic. The garlic worked just as well as the drug and, of course, had fewer side effects. “Thus, garlic seems safer clinically and as effective,” but saying something is as effective as chelation therapy isn’t saying much. Remember how chelation drugs can lower blood levels in chronic lead poisoning, but they don’t actually improve neurological function?

Well, after treatment with garlic, significant clinical improvements were seen, including less irritability, fewer headaches, and improvements in reflexes and blood pressure, but these improvements were not seen in the drug group. They weren’t seen after treatment with the chelation therapy drug. So, garlic was safer and more effective. “Therefore, garlic can be recommended for the treatment of mild-to-moderate lead poisoning.


 There are also some human studieson vitamin C. Check out Can Vitamin C Help with Lead Poisoning?.

For even more lead videos, see:

To learn more about chlorella, see:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations: