How to Treat Polycystic Ovary Syndrome (PCOS) with Diet

Given the role that oxidant free radicals are thought to play in aging and disease, one reason fruits and vegetables may be so good for us is that they contain antioxidant compounds. As you can see at 0:20 in my video Benefits of Marjoram for Polycystic Ovary Syndrome (PCOS), different vegetables and herbs have different antioxidant content. When making a salad, for example, spinach, arugula, or red leaf lettuce may provide twice the antioxidants as butterhead lettuce, and choosing purple cabbage over green, or red onions over white can also boost the salad’s antioxidant power.

Fresh herbs are so powerful that even a small amount may double or even quadruple the antioxidant power of the entire meal. For instance, as you can see at 0:50 in my video, the total antioxidants in a simple salad of lettuce and tomato jump up by adding just a tablespoon of lemon balm leaves or half a tablespoon of oregano or mint. Adding marjoram, thyme, or sage not only adds great flavor to the salad, but effectively quadruples the antioxidant content at the same time, and adding a little fresh garlic or ginger to the dressing ups the antioxidant power even more.

Herbs are so antioxidant-rich that researchers decided to see if they might be able to reduce the DNA-damaging effects of radiation. Radioactive iodine is sometimes given to people with overactive thyroid glands or thyroid cancer to destroy part of the gland or take care of any remaining tumor cells after surgery. For days after the isotope injection, patients become so radioactive they are advised not to kiss or sleep close to anyone, including their pets, and if they breathe on a phone, they’re advised to wipe it “carefully” or cover it “with an easily removed plastic bag.” Other recommendations include “avoid[ing] splatter of radioactive urine,” not going near your kids, and basically just staying away from others as much as possible.

The treatment can be very effective, but all that radiation exposure appears to increase the risk of developing new cancers later on. In order to prevent the DNA damage associated with this treatment, researchers tested the ability of oregano to protect chromosomes of human blood cells in vitro from exposure to radioactive iodine. As you can see at 2:25 in my video, at baseline, about 1 in 100 of our blood cells show evidence of chromosomal damage. If radioactive iodine is added, though, it’s more like 1 in 8. What happens if, in addition to the radiation, increasing amounts of oregano extract are added? Chromosome damage is reduced by as much 70 percent. Researchers concluded that oregano extract “significantly protects” against DNA damage induced by the radioactive iodine in white blood cells. This was all done outside the body, though, which the researchers justified by saying it wouldn’t be particularly ethical to irradiate people for experimental research. True, but millions of people have been irradiated for treatment, and researchers could have studied them or, at the very least, they could have just had people eat the oregano and then irradiate their blood in vitro to model the amount of oregano compounds that actually make it into the bloodstream.

Other in vitro studies on oregano are similarly unsatisfying. In a comparison of the effects of various spice extracts, including bay leaves, fennel, lavender, oregano, paprika, parsley, rosemary, and thyme, oregano beat out all but bay leaves in its ability to suppress cervical cancer cell growth in vitro while leaving normal cells alone. But people tend to use oregano orally—that is, they typically eat it—so the relevance of these results are not clear.

Similarly, marjoram, an herb closely related to oregano, can suppress the growth of individual breast cancer cells in a petri dish, as you can see at 3:53 in my video, and even effectively whole human breast tumors grown in chicken eggs, which is something I’ve never seen before. Are there any clinical trials on oregano-family herbs on actual people? The only such clinical, randomized, control study I could find was a study on how marjoram tea affects the hormonal profile of women with polycystic ovary syndrome (PCOS). The most common cause of female fertility problems, PCOS affects up to one in eight young women and is characterized by excessive male hormones, resulting in excess body or facial hair, menstrual irregularities, and cysts in one’s ovaries that show up on ultrasounds.

Evidently, traditional medicine practitioners reported marjoram tea was beneficial for PCOS, but it had never been put to the test…until now. Drinking two daily cups of marjoram tea versus a placebo tea for one month did seem to beneficially affect the subjects’ hormonal profiles, which seems to offer credence to the claims of the traditional medicine practitioners. However, the study didn’t last long enough to confirm that actual symptoms improved as well, which is really what we care about.

Is there anything that’s been shown to help? Well, reducing one’s intake of dietary glycotoxins may help prevent and treat the disease. Over the past 2 decades there has been increasing evidence supporting an important contribution from food-derived advanced glycation end products (AGEs)…[to] increased oxidative stress and inflammation, processes that play a major role in the causation of chronic diseases,” potentially including polycystic ovary syndrome (PCOS). Women with PCOS tend to have nearly twice the circulating AGE levels in their bloodstream, as you can see at 0:33 in my video Best Foods for Polycystic Ovary Syndrome (PCOS). 

PCOS may be the most common hormonal abnormality among young women in the United States and is a common cause of infertility, menstrual dysfunction, and excess facial and body hair. The prevalence of obesity is also higher in women with PCOS. Since the highest AGE levels are found in broiled, grilled, fried, and roasted foods of “mostly animal origin,” is it possible that this causal chain starts with a bad diet? For instance, maybe eating lots of fried chicken leads to obesity, which in turn leads to PCOS. In that case, perhaps what we eat is only indirectly related to PCOS through weight gain. No, because the same link between high AGE levels and PCOS was found in lean women as well.

“As chronic inflammation and increased oxidative stress have been incriminated in the pathophysiology [or disease process] of PCOS, the role of AGEs as inflammatory and oxidant mediators, may be linked with the metabolic and reproductive abnormalities of the syndrome.” Further, the buildup of AGE inside polycystic ovaries themselves suggests a potential role of AGEs contributing to the actual disease process, beyond just some of its consequences.

RAGE is highly expressed in ovarian tissues. The receptor in the body for these advanced glycation end products, the “R” in RAGE, is concentrated in the ovaries, which may be particularly sensitive to its effect. So, AGEs might indeed be contributing to the cause of PCOS and infertility.

Does this mean we should just cut down on AGE-rich foods, such as meat, cheese, and eggs? Or hey, why not come up with drugs that block AGE absorption? We know AGEs have been implicated in the development of many chronic diseases. Specifically, food-derived AGEs play an important role because diet is a major source of these pro-inflammatory AGEs. Indeed, cutting down on these dietary glycotoxins reduces the inflammatory response, but the “argument is often made that stewed chicken would be less tasty than fried chicken…” Why not have your KFC and eat it, too? Just take an AGE-absorption blocking drug every time you eat it to reduce the absorption of the toxins. What’s more, it actually lowers AGE blood levels. This oral absorbent drug, AST-120, is just a preparation of activated charcoal, like what’s used for drug overdoses and when people are poisoned. I’m sure if you took some ipecac with your KFC, your levels would go down, too.

There’s another way to reduce absorption of AGEs, and that’s by reducing your intake in the first place. It’s simple, safe, and feasible. The first step is to stop smoking. The glycotoxins in cigarette smoke may contribute to increased heart disease and cancer in smokers. Then, decrease your intake of high-AGE foods, increase your intake of foods that may help pull AGEs out of your system, like mushrooms, and eat foods high in antioxidants, like berries, herbs, and spices. “Dietary AGE intake can be easily decreased by simply changing the method of cooking from a high dry heat application to a low heat and high humidity…” In other words, move away from broiling, searing, and frying to more stewing, steaming, and boiling.

What we eat, however, may be more important than how we cook it. At 4:00 in my video, I include a table showing the amounts of AGEs in various foods. For instance, boiled chicken contains less than half the glycotoxins of roasted chicken, but even deep-fried potatoes have less than boiled meat. We can also eat foods raw, which doesn’t work as well as for blood pudding, but raw nuts and nut butters may contain about 30 times less glycotoxins than roasted, and we can avoid high-AGE processed foods, like puffed, shredded, and flaked breakfast cereals.

Why does it matter? Because study after study has shown that switching to a low-AGE diet can lower the inflammation within our bodies. Even just a single meal high in AGEs can profoundly impair our arterial function within just two hours of consumption. At 4:54 in my video, you can see the difference between a meal of fried or broiled chicken breast and veggies compared with steamed or boiled chicken breast and veggies. Same ingredients, just different cooking methods. Even a steamed or boiled chicken meal can still impair arterial function, but significantly less than fried or broiled.

“Interestingly, the amount of AGEs administered [to subjects] during the HAGE [high-AGE] intervention was similar to the average estimated daily intake by the general population,” who typically follow the standard American diet. This is why we can decrease inflammation in people by putting them on a low-AGE diet, yet an increase in inflammation is less apparent when subjects switch from their regular diet to one high in AGEs. Indeed, they were already eating a high-AGE diet with so many of these glycotoxins.

Do we have evidence that reducing AGE intake actually helps with PCOS? Yes. Within just two months, researchers found differences from subjects’ baseline diets switched to a high-AGE diet and then to a low-AGE diet, with parallel changes in insulin sensitivity, oxidative stress, and hormonal status, as seen at 5:54 in my video. The take-home learning? Those with PCOS may want to try a low-AGE diet, which, in the study, meant restricting meat to once a week and eating it only boiled, poached, stewed, or steamed, as well as cutting out fast-food-type fare and soda.

What if instead of eating steamed chicken, we ate no meat at all? Rather than measuring blood levels, which vary with each meal, we can measure the level of glycotoxins stuck in our body tissues over time with a high-tech device that measures the amount of light our skin gives off because AGEs are fluorescent. And, not surprisingly, this turns out to be a strong predictor of overall mortality. So, the lower our levels, the better. The “one factor that was consistently associated with reduced [skin fluorescence]: a vegetarian diet.” This “suggests that a vegetarian diet may reduce exposure to preformed dietary AGE…potentially reduc[ing] tissue AGE,” as well as chronic disease risk


What’s so great about antioxidants? See my videos:

Just how many antioxidants do we need? Check out:

For a few simple tips on how to quickly boost the antioxidant content of your food with herbs and spices, see my video Antioxidants in a Pinch.

I touched on the benefits of spearmint tea for PCOS in Enhancing Athletic Performance with Peppermint. Another sorely under-recognized gynecological issue is endometriosis, which I discuss in How to Treat Endometriosis with Seaweed.

Because of AGEs, I no longer toast nuts or buy roasted nut butters, which is disappointing because I really enjoy those flavors so much more than untoasted and unroasted nuts. But, as Dr. McDougall likes to say, nothing tastes as good as healthy feels. For more on why it’s important to minimize our exposure to these toxic compounds, see:

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

 

 

Vitamin C for Male Infertility and Lead Poisoning?

What is the clinical relevance of vitamin C among lead-exposed infertile men? Compared to controls, lead battery industry workers given 1,000 mg of vitamin C every workday for three months experienced “a significant increase in sperm motility and sperm count, as well as decrease in abnormal sperm,” and “a significant reduction in the incidence of sperm DNA fragmentation,” that is, damaged sperm DNA. Okay, but the ideal endpoint would be bouncing baby boys and girls. Enter this extraordinary little study from the University of Texas from more than 30 years ago.

Twenty-seven men with fertile wives had been trying to have kids for years to no avail. Twenty of them were given 1,000 mg of vitamin C a day for two months, and 7 acted as controls and didn’t get any vitamin C. The researchers followed up at the end of the 60 days. By then, every single one of the wives of each of the 20 men who had gotten the vitamin C had became pregnant—20 out of 20! After years of frustration, boom: 100-percent pregnant. What’s more, not a single one of the wives of men in the control group got pregnant. Rarely does one see these kinds of black-and-white results in the medical literature for any intervention.

Is the vitamin C lowering the oxidative stress from the lead, or is it actually lowering the level of lead? Sure, antioxidant supplementation can have antioxidant effects, but it may fail to actually lower lead levels in the blood. Now, this was in a group of workers who were breathing lead day in and day out, and the way vitamin C may work is by simply blocking the “intestinal absorption of lead.” An earlier study showed vitamin C supplementation apparently cut lead levels by a third within six months, but that was with a whopping dose of 2 g with added zinc. Another small study found the same 30 percent drop with just 500 mg a day, no zinc, and in only one month. But neither of those studies had a control group of subjects who didn’t take anything, so we don’t know if their levels would have fallen anyway.

Similarly, there is an almost too-good-to-be-true study on the role of vitamin C in scavenging lead toxicity from “biosystems,” by which they meant children. They got 250 to 500 mg a day of vitamin C for a few months, and shaved hair samples every month saw up to a 69 percent decline in lead levels. Researchers repeated it in two other small groups of kids and saw the same amazing kind of drops in every single child. But maybe lead levels were just dropping throughout the whole community during that time? Without measuring lead levels in a control group of kids not taking vitamin C, we can’t be sure.

As I illustrate from 3:17 in my video Yellow Bell Peppers for Male Infertility and Lead Poisoning?, with eight weeks of vitamin C, lead levels dropped in the blood and rose in the urine. One could conclude that the vitamin C was pulling lead out of the body, but the same thing happened in the placebo group: Blood levels dropped, and urine levels rose. So, it had nothing to do with the vitamin C at all. That’s why it’s always important to have a control group.

The same applies with studies that appeared to show no benefit. For example, 36 battery manufacturing workers were studied. Each was given vitamin C, yet there was no change in their lead levels. But, maybe their co-workers suffered a big increase in lead levels during that same time period, and the vitamin C was actually successful in keeping the subjects’ levels from rising. You don’t know without a control group.

That’s why studies like “The effects of vitamin C supplementation on blood and hair levels of cadmium, lead, and mercury” are so important. Vitamin C versus an identical-looking sugar pill placebo. The result? The vitamin C failed to help, which really put a damper on enthusiasm for using vitamin C for lead poisoning until a now-famous study was published in 1999 that showed that vitamin C supplementation could lead to a decrease in blood levels. As you can see at 4:32 in my video, after four weeks of taking a placebo, not much change occurred in blood lead levels in the control group, which is what we’d expect. In contrast, the vitamin C group started out at about the same blood lead level as the control group, but within one week of taking 1,000 mg of vitamin C a day, lead levels dropped 81 percent. So, supplementation of vitamin C “may provide an economical and convenient method of reducing blood-lead levels, possibly by reducing the intestinal absorption of lead.”

The urine lead levels didn’t change, so it’s not as if the subjects were excreting more lead in their urine to bring down their blood levels. However, most of the lead in our blood is in the red blood cells, which are recycled in the liver and discharged through the bile into the gut where the lead could just get reabsorbed—unless, perhaps, you’ve got a lot of vitamin C in there to block the re-absorption. But 1,000 mg is a lot of vitamin C. Would something like 200 mg, which is just about how much vitamin C you’d get in an orange and a cup of broccoli or strawberries, work? The researchers tested that, too. The 200 mg group started out the same as the control and the 1,000 mg group, but blood lead levels didn’t really budge. Bummer! So, 1,000 mg seemed to work, but 200 mg didn’t. Isn’t 1,000 mg of vitamin C a bit unnatural, though? The RDA is only 60 mg. Well, actually, we may have evolved for millions of years getting closer to 600 mg a day—ten times the current RDA—because we were eating so many fruits and greens. Okay, but could you reach 1,000 mg of vitamin C without having to take pills? Yes! That’s the amount of vitamin C, for example, that can be found in three yellow bell peppers.


Other videos in my series on lead include:

Note that there is nothing special about yellow bell peppers—other than their extraordinary vitamin C content, that is. I just used them as a practical way to get 1,000 mg of vitamin C in whole-food form. They’re certainly easier than eating ten oranges!

Though, remember my video Peppers and Parkinson’s: The Benefits of Smoking Without the Risks? So, one would expect to get all the benefits of the 1,000 mg of vitamin C with benefits. Why not just take vitamin C supplements? See Do Vitamin C Supplements Prevent Colds but Cause Kidney Stones?.

If hundreds of milligrams a day of vitamin C sounds like a lot, check out What Is the Optimal Vitamin C intake?.

You may be interested in my vitamin C and cancer series:

Finally, for more on male fertility, see:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Can Vitamin C Supplements Help with Lead Poisoning?

“Even if a nutritional manipulation is proven effective in reducing blood lead levels, reliance on such an intervention places most of the burden for prevention on those most affected and least responsible for the underlying environmental causes of lead toxicity. Nutritional interventions, therefore, must never substitute for efforts to reduce lead exposure to safe levels. On the other hand, when used as an adjunct to environmental measures, some nutritional changes may prove to have benefits beyond any impact on lead toxicity.” For example, consumption of vitamin C-rich foods may help with “blood pressure, blood lipid profiles, and respiratory symptoms,” in addition to perhaps influencing “lead toxicity through an influence on absorption of lead, elimination of lead, transport within the body, tissue binding, or secondary mechanisms of toxicity,” that is, even just helping ameliorate some of the damage. But what is this based on?

In 1939, a remarkable study was published, entitled “Vitamin C treatment in lead poisoning,” in which 17 lead industry workers were given 100 mg of vitamin C a day, the amount found in one or two oranges, and “with practically all of them there was a marked gain in vigor, color of skin, cheerfulness, blood picture, appetite and ability to sleep well.” The 17 workers were chosen because they seemed to be in pretty bad shape and possibly even had scurvy, so it’s no wonder a little vitamin C helped. But vitamin C is an antioxidant, and oxidation is “an important mechanism underlying lead toxicity,” so it’s conceivable that it may have mediated some of the harm. But, the vitamin C didn’t appear to just reduce the damage from the lead—it also reduced the lead itself. As you can see from 1:43 in my video Can Vitamin C Help with Lead Poisoning?, the amount of lead in a painter’s urine over a period of a month after starting 200 mg of vitamin C a day exhibited a five-fold drop, suggesting he was absorbing less of the lead into his body. He was one of three painters researchers tried this on, and evidently all three painters’ levels dropped. The researchers concluded that those “exposed to lead…should be advised to include in their diet plenty of such rich sources of vitamin C as tomatoes (fresh or canned), raw cabbage, oranges or grapefruit, raw spinach (or even cooked, in very little water), raw turnips, green bell peppers, cantaloupe, etc.”

Now, this drop in lead in the subjects’ urine was seen with only three painters, and the study didn’t have a control group of painters who didn’t take vitamin C, so perhaps everyone’s lead levels would have dropped for some other reason or perhaps it was just a coincidence. You don’t know…until you put it to the test.

Those original data were so compelling that others were inspired to try to replicate them. I mean, if it actually worked, if vitamin C could help with lead poisoning, grapefruits could be handed out at the factory door! The earlier study didn’t have a good control group, but the researchers weren’t going to make that same mistake this time. In this study, half of the group got 100 mg of vitamin C a day—not just for a month but for a year—and the other group got nothing. The result? “Careful study of a large group of lead workers failed to reveal any effect of ascorbic acid vitamin C…on the lead concentration in the blood…or urine” (emphasis added). There was no difference in their physical condition and no changes in their blood work, so “no reason has been found for recommending the use of ascorbic acid vitamin C to minimize effects of lead absorption.” What a disappointment. It looked so promising!

Whenever I study a topic, I try to read the research chronologically so I can experience the discoveries as they happened throughout history. At this point, though, I was so tempted to jump to a recent review to see what had happened in the intervening 74 years since that first study was published, but I didn’t want to spoiler alert! myself, so I kept reading the papers sequentially. There were in vitro studies where researchers dripped antioxidants on lead exposed cells and it seemed to help, so they jumped on the cantaloupe bandwagon, too, but these were test tube studies.

The first population study was published in 1999, and, as you can see at 4:02 in my video, researchers did find that those with high vitamin C levels in their blood tended to have lower lead levels. Youths with the highest vitamin C levels had a nearly 90 percent lower prevalence of elevated blood lead levels compared to those with the lowest vitamin C levels. Now, this was a cross-sectional study, just a snapshot in time, so we don’t know if the vitamin C caused a drop in lead or if perhaps the lead caused a drop in vitamin C. Lead is a pro-oxidant, so maybe it ate up the vitamin C. And who has higher vitamin C levels? Those who can afford to have higher vitamin C levels and eat lots of fruits and vegetables. “It is also possible that higher ascorbic acid levels may represent healthier lifestyles or greater socio-economic status.” Indeed, maybe lower vitamin C levels are just a proxy for being poor, and that’s the real reason for higher lead levels.

There are lots of good reasons to be eating more fruits and vegetables, and we should be eating more spinach regardless, but it would be nice to know if vitamin C actually helps with lead poisoning. And, to know that, we need to put it to the test.

Unfortunately, most of the published interventions are not very helpful, with such titles as “Effects of dietary vitamin C supplementation on lead-treated sea cucumbers,….”  And, there is a surprising number of articles on the effects of vitamin C supplementation on mouse testicles. Why? Because lead may impair male fertility. Indeed, lead workers appear to have a reduced likelihood of fathering children, but this may in part be due to oxidative stress. In that case, how about giving an antioxidant, like vitamin C, and putting it to the test(es)? No, I’m not talking about rat testes or suggesting frog testes. Neither am I proposing crab testes. (I didn’t even know crabs had testicles!) Finally, here’s one to discuss: “Clinical relevance of vitamin C among lead-exposed infertile men.” A study of human men, which I will cover in Yellow Bell Peppers for Male Infertility and Lead Poisoning?.

I’m always conflicted about writing these kinds of blogs and producing videos like Can Vitamin C Help with Lead Poisoning?. I can imagine some just want “the answer,” but those with vested and commercial interests often exploit that natural impulse. This is problem with science in general, but perhaps particularly in nutrition. When it comes to something as life-or-death important as what to feed ourselves and our families we shouldn’t just follow someone’s opinions or beliefs on the matter. We should demand to see the science. That’s what I try to do: Present the available data as fairly and even-handedly as possible, and let you make up your own mind. You can imagine how easily someone could cherry-pick just one or two studies and present a distorted but compelling case for or against, in this case, vitamin C supplements. That’s why I feel it’s important to present each study in their historical context. Stay tuned for the thrilling conclusion in Yellow Bell Peppers for Male Infertility & Lead Poisoning?.


 For those of you who are thinking, Why should I care about lead? I don’t eat paint chips or use leaded gasoline. Anyway, what’s the big deal?, check out my full series of lead videos for information on how we got into this mess and some of the ways we can dig ourselves out:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations: