The Role of Meat and Dairy in Triggering Type 1 Diabetes

Type 1 diabetes “arises following the autoimmune destruction of the insulin-producing pancreatic β [beta] cells…[and] is most often diagnosed in children and adolescents, usually presenting with a classic trio of symptoms” as their blood sugars spike: excessive thirst, hunger, and urination. They need to go on insulin for the rest of their lives, since their own immune systems attacked and destroyed their ability to produce it. What would cause our body to do such a thing? I examine this in my video, Does Paratuberculosis in Milk Trigger Type 1 Diabetes?

Whatever it is, it has been on the rise around the world, starting after World War 2. “Understanding why and how this produced the current pandemic of childhood diabetes would be an important step toward reversing it.” A plausible guess is “molecular mimicry, whereby a foreign antigen (bacterial or viral) provokes an immune response, which cross-reacts” with a similar-looking protein on our pancreas such that when we attack the bug, our own organ gets caught in the cross-fire. Given this, what pancreatic proteins are type 1 diabetics self-attacking? In the 1980s, a protein was identified that we came to realize in the 1990s looked an awful lot like a certain mycobacterial protein. Mycobacteria are a family of bacteria that cause diseases like tuberculosis and leprosy, and, in one study, all newly diagnosed type 1 diabetic children were found to have immune responses to this mycobacterial protein. This didn’t make any sense as incidence of type 1 diabetes has been going up in the industrialized world, whereas TB and leprosy rates have gone down. However, there is one mycobacterial infection in farm animals that has shot up with the industrialization and globalization of animal agriculture: paratuberculosis (paraTB), which causes Johne’s disease in animals. Paratuberculosis is now recognized as a global problem for the livestock industry.

Weren’t there a dozen or so studies suggesting that “cow’s milk exposure may be an important determinant of subsequent type 1 diabetes” in childhood? Indeed. After putting two and two together, an idea was put forward in 2006: Could mycobacterium paratuberculosis from cattle be a trigger for type 1 diabetes? The idea was compelling enough for researchers put it to the test.

They attempted to test the association of Mycobacterium avium paratuberculosis (MAP), the full name for the bug, with type 1 diabetes by testing diabetics for the presence of the bacteria in their blood. Lo and behold, most of the diabetic patients tested positive for the bug, compared to only a minority of the healthy control subjects. This evidence of MAP bacteria in the blood of patients with type 1 diabetes “might provide an important foundation in establishing an infectious etiology,” or cause, for type 1 diabetes. “These results also might possibly have implications for countries that have the greatest livestock populations and high incidence of MAP concurrent with the highest numbers of patients with” diabetes, like the United States.

Johne’s is the name of the disease when farm animals get infected by MAP. The reason diabetes researchers chose to look at Sardinia, an island off the coast of Italy, is because paratuberculosis is present in more than 50 percent of Sardinian herds. Surpassing that, though, is the U.S. dairy herd. According to a recent national survey, 68 percent of the U.S. dairy herd are infected with MAP, especially those cattle at big, industrial dairies, as you can see at 3:33 in my video. Ninety-five percent of operations with more than 500 cows came up positive. It’s estimated the disease costs the U.S. industry more than a billion dollars a year.

How do people become exposed? “The most important routes of access of MAP to the [human] food chain appear to be contaminated milk, milk products and meat” from infected cattle, sheep, and goats. MAP or MAP DNA has been detected in raw milk, pasteurized milk, infant formula, cheese, ice cream, muscle and organ tissues, and retail meat. We know paraTB bacteria survive pasteurization because Wisconsin researchers bought hundreds of pints of retail milk off store shelves from three of the top U.S. milk-producing states and tested for the presence of viable, meaning living, MAP bacteria. They found that 2.8 percent of the retail milk tested came back positive for live paraTB bacteria, with most brands yielding at least one positive sample. If paraTB does end up being a diabetes trigger, then “these findings indicate that retail milk [in the United States] would need to be considered as a transmission vector.” Why hasn’t the public heard about this research? Perhaps because the industry is not too keen on sharing it. Indeed, according to an article in the Journal of Dairy Science: “Fear of consumer reaction…can impede rational, open discussion of scientific studies.”

Not only is MAP a serious problem for the global livestock industry, but it also may trigger type 1 diabetes, given that paraTB bacteria have been found in the bloodstream of the majority of type 1 diabetics tested who presumably are exposed through the retail milk supply as the bacteria can survive pasteurization. But what about the meat supply? MAP has been found in beef, pork, and chicken. It’s an intestinal bug, and unfortunately, “[f]aecal contamination of the carcass in the abattoir [slaughter plant] is unavoidable…” Then, unless the meat is cooked well-done, it could harbor living MAP.

In terms of meat, “ground beef represents the greatest potential risk for harboring MAP…[as] a significant proportion originates from culled dairy cattle,” who may be culled because they have paratuberculosis. These animals may go straight into the human food chain. There also exists greater prevalence of fecal contamination and lymph nodes in ground meat, and the grinding can force the bacteria deep inside the ground beef burger. As such, “given the weight of evidence and the severity and magnitude of potential human health problems, the precautionary principle suggests that it is time to take actions to limit…human exposure to MAP.” At the very least, we should stop funneling animals known to be infected into the human food supply.

We know that milk exposure is associated with type 1 diabetes, but what about meat? As I discuss in my video Meat Consumption and the Development of Types 1 Diabetes, researchers attempted to tease out the nutritional factors that could help account for the 350-fold variation in type 1 diabetes rates around the world. Why do some parts of the world have rates hundreds of times higher than others? Yes, the more dairy populations ate, the higher their rates of childhood type 1 diabetes, but the same was found for meat, as you can see at 2:07 in my video. This gave “credibility to the speculation that the increasing dietary supply of animal protein after World War II may have contributed to the reported increasing incidence of type 1 diabetes…” Additionally, there was a negative correlation—that is, a protective correlation that you can see at 2:26 in my video—between the intake of grains and type 1 diabetes, which “may fit within the more general context of a lower prevalence of chronic diseases” among those eating more plant-based diets.

What’s more, the increase in meat consumption over time appeared to parallel the increasing incidence of type 1 diabetes. Now, we always need to be cautious about the interpretation of country-by-country comparisons. Just because a country eats a particular way doesn’t mean the individuals who get the disease ate that way. For example, a similar study looking specifically at the diets of children and adolescents between different countries “support[ed] previous research about the importance of cow’s milk and [other] animal products” in causing type 1 diabetes. But, the researchers also found that in countries where they tended to eat the most sugar, kids tended to have lower rates of the disease, as you can see at 3:18 in my video. This finding didn’t reach statistical significance since there were so few countries examined in the study, but, even if it had and even if there were other studies to back it up, there are countless factors that could be going on. Maybe in countries where people ate the least sugar, they also ate the most high fructose corn syrup or something. That’s why you always need to put it to the test. When the diets of people who actually got the disease were analyzed, increased risk of type 1 diabetes was associated with milk, sugar, bread, soda, eggs, and meat consumption.

In Sardinia, where the original link was made between paraTB and type 1 diabetes, a highly “statistically significant dose-response relationship” was found, meaning more meat meant more risk, especially during the first two years of children’s lives. So, “[h]igh meat consumption seems to be an important early in life cofactor for type 1 diabetes development,” although we needed more data.

The latest such study, which followed thousands of mother-child pairs, found that mothers eating meat during breastfeeding was associated with an increased risk of both preclinical and full-blown, clinical type 1 diabetes by the time their children reached age eight. The researchers thought it might be the glycotoxins, the AGEs found in cooked meat, which can be transferred from mother to child through breastfeeding, but they have learned that paratuberculosis bacteria can also be transferred through human breast milk. These bacteria have even been grown from the breast milk of women with Crohn’s disease, another autoimmune disease linked to paraTB bacteria exposure.


For a deeper discussion of other possibilities as to why cow’s milk consumption is linked to this autoimmune destruction of insulin production, see Does Casein in Milk Trigger Type 1 Diabetes? and Does Bovine Insulin in Milk Trigger Type 1 Diabetes?.

If we don’t drink milk, though, what about our bone health? See my videos Long-Term Vegan Bone Health and Is Milk Good for Our Bones?.

The vast majority of cases of diabetes in the United States are type 2, though. Ironically, meat may also play a role there. See my videos Why Is Meat a Risk Factor for Diabetes? and How May Plants Protect Against Diabetes? for more information.

For more on the links between milk and diabetes, see my videos Does Casein in Milk Trigger Type 1 Diabetes? and Does Bovine Insulin in Milk Trigger Diabetes?. What about treating and preventing diabetes through diet? Check out How Not to Die from Diabetes and How to Prevent Prediabetes from Turning Into Diabetes.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Dairy Industry Responds to Bovine Leukemia Virus in Breast Cancer

What was the response to the revelation that as many as 37 percent of breast cancer cases may be attributed to exposure to bovine leukemia virus (BLV), a cancer-causing cow virus found in the milk of nearly every dairy herd in the United States? I discuss this issue in my video Industry Response to Bovine Leukemia Virus in Breast Cancer. The industry pointed out that some women without breast cancer harbored the virus, too. Indeed, BLV was found in the tissues of 29 percent of women who didn’t have breast cancer, a finding the researchers replied “is not surprising considering the long latency period of breast cancer…” In other words, they may not have breast cancer yet.

It can take decades before a breast tumor can be picked up on mammography. So, even though people may be harboring this virus in their breast and feeling perfectly fine, the cancer may still be on its way. That’s how other cancer-causing deltaretroviruses appear to work. These viruses can make proteins that interfere with our DNA repair mechanisms. Infected cells are then more susceptible to carcinogens and slowly accumulate mutations over time. “Therefore, evidence of BLV in normal breast tissues prior to premalignant and malignant changes would be expected.” This pattern is what we see with cervical cancer, “in which the causative virus (HPV) is found not only in the malignant [cancerous] tissue, but also in premalignant dysplastic areas [the precancerous tissue] and in normal tissue adjacent to the malignant tumor.”

If BLV, a retrovirus, is really causing thousands of cases of breast cancer every year, wouldn’t some of the anti-retroviral therapies like some of the AIDS drugs be able to counter it? Perhaps, but it’s best not to get infected in the first place.

However, the agriculture industry appeared to be more concerned about consumer confidence in U.S. dairy than consumer cancer. Indeed, the “U.S. dairy industry face[d] a brewing public-relations brouhaha,” and it became “concerned about the possibility of eventual mandatory control of these diseases in dairy cattle along with public perception and an impact on the consumption of dairy products.” What would control look like? BLV is a blood-borne virus, but how is it spread? Is Bessie sharing dirty needles? In a sense, yes: “[B]lood (and BLV virus) is readily spread from animal to animal with blood contaminated needles and/or syringes, obstetrical sleeves, saw or gouge dehorners, tattoo pliers, ear taggers, hoof knives, nose tongs,” and other instruments that aren’t disinfected between animals. So, for example, when farmers are gouging or sawing at the cows’ heads during dehorning, “they are likely to drive blood into the next animal during the subsequent dehorning process.” Or, when they’re sticking their arms into cows’ rectums for artificial insemination, it’s not uncommon for there to be rectal bleeding—then they just go from one cow to the next.

More than 20 countries have successfully eradicated BLV from their herds by changing their practices, whereas it remains an epidemic in the United States in part because we’re not cleaning and disinfecting blood-contaminated equipment for things like “supernumerary teat removal,” which is done because “the presence of extra teats detracts from the beauty of the cow.” Supernumerary teats are removed by pulling them from the udder and cutting them off with a pair of scissors. Those scissors had better be clean—otherwise they could spread BLV from calf to calf and ultimately to someone’s breakfast, lunch, or dinner. Of course, we could just not slice off their teats at all, but then how would we “improve udder appearance?”


Up to 37 percent of breast cancer cases are attributable to exposure to bovine leukemia virus? See my video The Role of Bovine Leukemia Virus in Breast Cancer and its prequel, Is Bovine Leukemia Virus in Milk Infectious?.

The meat and dairy industries’ intransigence in the face of a human health threat reminds me of the antibiotics and steroids issues—continuing to place the public at risk to save a few bucks. See, for example, Antibiotics: Agribusinesses’ Pound of Flesh and Zeranol Use in Meat and Breast Cancer.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

Cow Cancer Virus Implicated in Breast Cancer

Up to 20 percent of all cancers in general are linked to infections, particularly viruses, and the list of potentially carcinogenic infectious agents is growing. It would be great if we could find a virus that contributed to breast cancer risk, because then we might have new ways to prevent and treat it. Currently, the dietary link between breast cancer and consumption of meat and dairy is considered a saturated fat effect, but there is a cancer-causing bovine virus that infects the mammary gland cells of cows. The infectious virus is then released into the milk supply. Since most U.S. dairy herds are infected, scientists posit that Americans are often exposed to this bovine leukemia virus (BLV), which I discuss in my video The Role of Bovine Leukemia Virus in Breast Cancer.

We didn’t have proof of this until 2003, 34 years after the virus was first identified. Early on, our best available tests failed to find antibodies to BLV in human blood. When our immune system is exposed to a virus, it creates antibodies to attack it. No antibodies, no exposure. “This led to the prevailing opinion that…the virus is not a public health hazard.” Though those tests “were state of the art at that time, they are extremely insensitive compared to more modern techniques.” As a result, researchers decided to re-examine the issue now that we have better tests. They took blood from about 250 people simply to address the question: “Do any humans have antibodies to BLV?” The answer? Yes, 191 of them did––74 percent. That shouldn’t have come as a surprise, however: By then, nearly 90 percent of American dairy herds were infected, and, according to the latest national survey, 100 percent of the big factory dairy farms were infected, as determined by testing the milk coming from those operations. Given this, why isn’t there an epidemic of cancer of the udder? Dairy cattle are slaughtered so young that there isn’t a lot of time for them to develop gross tumors, but that’s how most women may be getting infected. Although pasteurization should knock out the virus, who hasn’t eaten a rare, pink-in-the-middle burger at some point?

The bottom line is that the “long-held assumption that BLV is not a public health hazard…is no longer tenable…” This whole field of investigation needs to be reopened, with the next step determining whether humans are actually infected. “The presence of antibodies to particular viruses in human sera is generally interpreted as an indicator of a present or past infection with the virus.” But, theoretically, we might have developed antibodies to the dead viruses we ate, viruses that had been killed by cooking or pasteurization. Just because three-quarters of us have been exposed doesn’t mean we were actively infected by the virus.

How do we prove this? We would need to find the retrovirus actively stitched into our own DNA. Well, millions of women have had breast surgery, so why not just look at the tissue? Researchers finally did just that and published their findings in the Centers for Disease Control and Protection’s emerging infectious diseases journal: Forty-four percent of samples tested positive for BLV, proving for the first time that humans can be infected with bovine leukemia virus. The final step? Determine whether the virus is actually contributing to disease. In other words, are the bovine leukemia viruses we’re finding in human breast tissue cancer-causing or just “harmless passengers”?

One way to make that determination is to see whether the virus is more often present in those with breast cancer. No one had ever looked for the virus in breast tissue from people with cancer…until now. The “[p]resence of BLV-DNA in breast tissues was strongly associated with diagnosed and histologically confirmed breast cancer…” As many as 37 percent of human breast cancer cases may be attributable to exposure to bovine leukemia virus.


For some historical background leading up to these shocking findings, see my video Is Bovine Leukemia Virus in Milk Infectious?.

I couldn’t wait to read the meat and dairy industry journals to see how they’d try to spin this. Find out what I discovered in my final video in this series Industry Response to Bovine Leukemia Virus in Breast Cancer.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations: