How the Egg Industry Tried to Bury the TMAO Risk

“Metabolomics is a term used to describe the measurement of multiple small-molecule metabolites in biological specimens, including bodily fluids,” with the goal of “[i]dentifying the molecular signatures.” For example, if we compared the metabolic profile of those with severe heart disease to those with clean arteries, we might be able to come up with a cheap, simple, and noninvasive way to screen people. If heart patients happened to have something in their blood that healthy people didn’t, we could test for that. What’s more, perhaps it would even help us understand the mechanisms of disease. “To refer to metabolomics as a new field is injustice to ancient doctors who used ants to diagnose the patients of diabetes” (because the ants could detect the sugar in the diabetics’ urine).

The first modern foray discovered hundreds of substances in a single breath, thanks to the development of computer technology that made it possible to handle large amounts of information—and that was in 1971, when a computer took up nearly an entire room. “[N]ew metabolomics technologies [have] allowed researchers to measure hundreds or even thousands of metabolites at a time,” which is good since more than 25,000 compounds may be entering our body through our diet alone.

Researchers can use computers to turn metabolic data into maps that allow them to try to piece together connections. You can see sample data and a map at 1:28 in my video Egg Industry Response to Choline and TMAO. Metabolomics is where the story of TMAO started. “Everyone knows that a ‘bad diet’ can lead to heart disease. But which dietary components are the most harmful?” Researchers at the Cleveland Clinic “screened blood from patients who had experienced a heart attack or stroke and compared the results with those from blood of people who had not.”

Using an array of different technology, the researchers identified a compound called TMAO, which stands for trimethylamine N-oxide. The more TMAO people had in their blood, the greater the odds they had heart disease and the worse their heart disease was.

Where does TMAO come from? At 2:19 in my video, you can see a graphic showing that our liver turns TMA into TMAO—but where does TMA come from? Certain bacteria in our gut turn the choline in our diet into TMA. Where is the highest concentration of choline found? Eggs, milk, and meats, including poultry and fish. So, when we eat these foods, our gut bacteria may make TMA, which is absorbed into our system and oxidized by our liver into TMAO, which may then increase our risk of heart attack, stroke, and death.

However, simply because people with heart disease tend to have higher TMAO levels at a snapshot in time doesn’t mean having high TMAO levels necessarily leads to bad outcomes. We’d really want to follow people over time, which is what researchers did next. Four thousand people were followed for three years, and, as you can see in the graph at 3:10 in my video, those with the highest TMAO levels went on to have significantly more heart attacks, strokes, or death.

Let’s back up for a moment. If high TMAO levels come from eating lots of meat, dairy, and eggs, then maybe the only reason people with high TMAO levels have lots of heart attacks is that they’re eating lots of meat, dairy, and eggs. Perhaps having high TMAO levels is just a marker of a diet high in “red meat, eggs, milk, and chicken”—a diet that’s killing people by raising cholesterol levels, for example, and has nothing to do with TMAO at all. Conversely, the reason a low TMAO level seems so protective may just be that it’s indicative of a more plant-based diet.

One reason we think TMAO is directly responsible is that TMAO levels predict the risk of heart attacks, strokes, or death “independently of traditional cardiovascular risk factors.” Put another way, regardless of whether or not you had high cholesterol or low cholesterol, or high blood pressure or low blood pressure, having high TMAO levels appeared to be bad news. This has since been replicated in other studies. Participants were found to have up to nine times the odds of heart disease at high TMAO blood levels even after “controll[ing] for meat, fish, and cholesterol (surrogate for egg) intake.”

What about the rest of the sequence, though? How can we be certain that our gut bacteria can take the choline we eat and turn it into trimethylamine in the first place? It’s easy. Just administer a simple dietary choline challenge by giving participants some eggs.

Within about an hour of eating two hard-boiled eggs, there is a bump of TMAO in the blood, as you can see at 4:51 in my video. What if the subjects are then given antibiotics to wipe out their gut flora? After the antibiotics, nothing happens after they eat more eggs. In fact, their TMAO levels are down at zero. This shows that our gut bacteria play a critical role. But, if we wait a month and give their guts some time to recover from the antibiotics, TMAO levels creep back up.

These findings did not thrill the egg industry. Imagine working for the American Egg Board and being tasked with designing a study to show there is no effect of eating nearly an egg a day. How could a study be rigged to show no difference? If we look at the effect of an egg meal (see 5:32 in my video), we see it gives a bump in TMAO levels. However, our kidneys are so good at getting rid of TMAO, by hours four, six, and eight, we’re back to baseline. So, the way to rig the study is just make sure the subjects hadn’t eaten those eggs in the last 12 hours. Then, you can show “no effect,” get your study published in the Journal of the Academy of Nutrition and Dietetics, and collect your paycheck.


Unfortunately, this appears to be part for the course for the egg industry. For more on their suspect activities, see:

For more on the TMAO story, see:

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

How to Lower Your Sodium Intake

Reduction of salt consumption by just 15 percent could save the lives of millions. If we cut our salt intake by half a teaspoon a day, which is achievable simply by avoiding salty foods and not adding salt to our food, we might prevent 22 percent of stroke deaths and 16 percent of fatal heart attacks—potentially helping more than if we were able to successfully treat people with blood pressure pills. As I discuss in my video Salt of the Earth: Sodium and Plant-Based Diets, an intervention in our kitchens may be more powerful than interventions in our pharmacies. One little dietary tweak could help more than billions of dollars worth of drugs.

What would that mean in the United States? Tens of thousands of lives saved every year. On a public-health scale, this simple step “could be as beneficial as interventions aimed at smoking cessation, weight reduction, and the use of drug therapy for people with hypertension or hypercholesterolemia,” that is, giving people medications to lower blood pressure and cholesterol. And, that’s not even getting people down to the target. 

A study I profile in my video shows 3.8 grams per day as the recommended upper limit of salt intake for African-Americans, those with hypertension, and adults over 40. For all other adults the maximum is 5.8 daily grams, an upper limit that is exceeded by most Americans over the age of 3. Processed foods have so much added salt that even if we avoid the saltiest foods and don’t add our own salt, salt levels would go down yet still exceed the recommended upper limit. Even that change, however, might save up to nearly a hundred thousand American lives every year.

“Given that approximately 75% of dietary salt comes from processed foods, the individual approach is probably impractical.” So what is our best course of action? We need to get food companies to stop killing so many people. The good news is “several U.S. manufacturers are reducing the salt content of certain foods,” but the bad news is that “other manufacturers are increasing the salt levels in their products. For example, the addition of salt to poultry, meats, and fish appears to be occurring on a massive scale.”

The number-one source of sodium for kids and teens is pizza and, for adults over 51, bread. Between the ages of 20 and 50, however, the greatest contribution of sodium to the diet is not canned soups, pretzels, or potato chips, but chicken, due to all the salt and other additives that are injected into the meat.

This is one of the reasons that, in general, animal foods contain higher amounts of sodium than plant foods. Given the sources of sodium, complying with recommendations for salt reduction would in part “require large deviations from current eating behaviors.” More specifically, we’re talking about a sharp increase in vegetables, fruits, beans, and whole grains, and lower intakes of meats and refined grain products. Indeed, “[a]s might be expected, reducing the allowed amount of sodium led to a precipitous drop” in meat consumption for men and women of all ages. It’s no wonder why there’s so much industry pressure to confuse people about sodium.

The U.S. Dietary Guidelines recommend getting under 2,300 milligrams of sodium a day, while the American Heart Association recommends no more than 1,500 mg/day. How do vegetarians do compared with nonvegetarians? Well, nonvegetarians get nearly 3,500 mg/day, the equivalent of about a teaspoon and a half of table salt. Vegetarians did better, but, at around 3,000 mg/day, came in at double the American Heart Association limit.

In Europe, it looks like vegetarians do even better, slipping under the U.S. Dietary Guidelines’ 2,300 mg cut-off, but it appears the only dietary group that nails the American Heart Association recommendation are vegans—that is, those eating the most plant-based of diets.


This is part of my extended series on sodium, which includes:

If you’re already cutting out processed foods and still not reaching your blood pressure goals, see:

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

The Benefits of Sesame Seeds for Knee Osteoarthritis

Doctors have been injecting arthritis patients with gold since the 1920s. In fact, “[g]old-based medicines have been in use for thousands of years…and remarkably…are still in clinical use as DMARDs,” or disease-modifying anti-rheumatic drugs, meaning they can slow the progression of rheumatoid arthritis. Unfortunately, such drugs can be toxic and even fatal, causing conditions such as gold lung, a gold-induced lung disease. “Although its use can be limited by the incidence of serious toxicity,” injectable gold has been shown to be beneficial to patients with rheumatoid arthritis. But maybe, as some researchers have suspected, some of that benefit comes from the sesame oil that’s injected, which is used as the liquid carrier for the gold.

As I discuss in my video Sesame Seeds for Knee Osteoarthritis, sesame seeds contain anti-inflammatory compounds with names such as sesamin and sesamol, which researchers suggest “may serve as a potential treatment for various inflammatory diseases.” Those observations, however, came from in vitro (test tube) studies. First, we have to see if sesame seeds have an anti-inflammatory effect in people, not just in cells in a petri dish, but there haven’t been any studies on the effects of sesame seeds on inflammatory markers in people with arthritis, for example…until now.

The abstract states: “Considering the high prevalence of osteoarthritis (OA) and since until now there had not been any human studies to evaluate the effect of sesame in OA patients, this study was designed to assess the effect of administration of sesame on inflammation…” Indeed, researchers found a significant drop in inflammatory markers, but what effect did sesame seeds have on the patients’ actual disease?

Fifty patients with osteoarthritis of the knee were split into two groups. Both received standard treatment, but the sesame group also received about a quarter cup of sesame seeds a day for two months. Before they started, the patients described their pain as about nine out of ten, where zero is no pain and ten is the maximum tolerable pain. After two months, the control group felt a little better and reported their pain was down to seven, but the sesame group dropped down to three and a half, significantly lower than the control group. The researchers concluded that sesame appeared to have a “positive effect…improving clinical signs and symptoms in patients with knee OA…”

The main problem with the study, though, is that the control group hadn’t been given a placebo. It’s hard to come up with a fake sesame seed, but without a placebo, researchers basically compared doing nothing to doing something, and any time you have patients do something, you can’t discount the placebo effect. That said, what are the downsides? That’s the nice thing about using food as medicine—only good side effects. Though the results are mixed, there have been studies using placebo controls that found that adding sesame seeds to our diet may improve our cholesterol and antioxidant status, and the amount of sesamin found in as little as about one tablespoon of sesame seeds can modestly lower blood pressure a few points within a month, enough, perhaps, to lower fatal stroke and heart attack risk by about 5 percent, potentially saving thousands of lives.


What other dietary interventions can help with arthritis? Check out:

If the placebo effect is really that powerful, should doctors prescribe them? They already do! Check out The Lie That Heals: Should Doctors Give Placebos? for more on this.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations: