Do the Pros of Brown Rice Outweigh the Cons of Arsenic?

Are there unique benefits to brown rice that would justify keeping it in our diet despite the arsenic content?

For years, warnings had been given about the arsenic levels in U.S. rice potentially increasing cancer risk, but it had never been put to the test until a study out of Harvard. The finding? “Long-term consumption of total rice, white rice or brown rice[,] was not associated with risk of developing cancer in US men and women.” This was heralded as good news. Indeed, no increased cancer risk found even among those eating five or more servings of rice per week. But, wait a second: Brown rice is a whole grain, a whole plant food. Shouldn’t brown rice be protective and not just neutral? I discuss this in my video Do the Pros of Brown Rice Outweigh the Cons of Arsenic?.

If you look at whole grains in general, there is “a significant inverse”—or protective—“association between total whole-grain intake and risk of mortality from total cancers,” that is, dying from cancer. My Daily Dozen recommendation of at least three servings of whole grains a day was associated with a 10 percent lower risk of dying from cancer, a 25 percent lower risk of dying from heart attacks or strokes, and a 17 percent lower risk of dying prematurely across the board, whereas rice consumption in general was not associated with mortality and was not found to be protective against heart disease or stroke. So, maybe this lack of protection means that the arsenic in rice is increasing disease risk, so much so that it’s cancelling out some of the benefits of whole-grain brown rice.

Consumer Reports suggested moderating one’s intake of even brown rice, but, given the arsenic problem, is there any reason we should go out of our way to retain any rice in our diet at all? With all of the other whole grain options out there, should we just skip the rice completely? Or, are there some unique benefits we can get from rice that would justify continuing to eat it, even though it has ten times more arsenic than other grains?

One study showed that “a brown rice based vegan diet” beat out the conventional Diabetes Association diet, even after adjusting for the extra belly fat lost by the subjects on the vegan diet, but that may have been due to the plant-based nature of their diet rather than just how brown rice-based it was.

Another study found a profound improvement in insulin levels after just five days eating brown rice compared to white rice, but was that just because the white rice made people worse? No, the brown rice improved things on its own, but the study was done with a South Indian population eating a lot of white rice to begin with, so this may have indeed been at least in part a substitution effect. And yet another study showed that instructing people to eat about a cup of brown rice a day “could significantly reduce weight, waist and hip circumference, BMI, Diastole blood pressure,” and inflammation—and not just because it was compared to white. However, a larger, longer study failed to see much more than a blood pressure benefit, which was almost as impressive in the white-rice group, so, overall, not too much to write home about.

Then, another study rolled around—probably the single most important study on the pro-rice sideshowing a significant improvement in artery function after eight weeks of eating about a daily cup of brown rice, but not white, as you can see at 3:18 in my video, and sometimes even acutely. If you give someone a meal with saturated fat and white rice, you can get a drop in artery function within an hour of consumption if you have some obesity-related metabolic derangements. But, if you give brown rice instead of white, artery function appears protected against the adverse effects of the meal. Okay, so brown rice does show benefits in interventional studies, but the question is whether it shows unique benefits. Instead, what about oatmeal or whole wheat?

Well, first, researchers needed to design an artery-crippling meal, high in saturated fat. They went with a Haagen Daaz, coconut cream, and egg milkshake given with a bowl of oatmeal or “a comparable bowl of whole rolled wheat.” What do you think happened? Do you think these whole grains blocked the artery-damaging effects like the brown rice did? The whole oats worked, but the whole wheat did not. So, one could argue that brown rice may have an edge over whole wheat. Do oats also have that beneficial long-term effect that brown rice did? The benefit was of a similar magnitude but did not reach statistical significance.

So, what’s the bottom line? Until we know more, my current thinking on the matter is that if you really like rice, you can moderate your risk by cutting down, choosing lower arsenic varieties, and cooking it in a way to lower exposure even further. But, if you like other whole grains just as much and don’t really care if you have rice versus quinoa or another grain, I’d choose the lower arsenic option.

Tada! Done with arsenic in the food supply—for now. Should the situation change, I’ll produce another video on the latest news. Make sure you’re subscribed so you don’t miss any updates.


Here are all 13 videos in the series, in case you missed any or want to go back and review:

And you may be interested in Benefits of Turmeric for Arsenic Exposure.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Cancer Risk from Arsenic in Rice and Seaweed

A daily half-cup of cooked rice may carry a hundred times the acceptable cancer risk of arsenic. What about seaweed from the coast of Maine?

“At one point during the reign of King Cotton, farmers in the south central United States controlled boll weevils with arsenic-based pesticides, and residual arsenic still contaminates the soil.” Different plants have different reactions to arsenic exposure. Tomatoes, for example, don’t seem to accumulate much arsenic, but rice plants are really good at sucking it out of the ground—so much so that rice can be used for “arsenic phytoremediation,” meaning you can plant rice on contaminated land as a way to clear arsenic from the soil. Of course, you’re then supposed to throw the rice—and the arsenic—away. But in the South, where 80 percent of U.S. rice is grown, we instead feed it to people.

As you can see at 0:52 in my video Cancer Risk from Arsenic in Rice and Seaweed, national surveys have shown that most arsenic exposure has been measured coming from the meat in our diet, rather than from grains, with most from fish and other seafood. Well, given that seafood is contributing 90 percent of our arsenic exposure from food, why are we even talking about the 4 percent from rice?

The arsenic compounds in seafood are mainly organic—used here as a chemistry term having nothing to do with pesticides. Because of the way our body can deal with organic arsenic compounds, “they have historically been viewed as harmless.” Recently, there have been some questions about that assumption, but there’s no question about the toxicity of inorganic arsenic, which you get more of from rice.

As you can see at 1:43 in my video, rice contains more of the toxic inorganic arsenic than does seafood, with one exception: Hijiki, an edible seaweed, is a hundred times more contaminated than rice, leading some researchers to refer to it as the “so-called edible hijiki seaweed.” Governments have started to agree. In 2001, the Canadian government advised the public not to eat hijiki, followed by the United Kingdom, the European Commission, Australia, and New Zealand. The Hong Kong Centre for Food Safety advised the public not to eat hijiki and banned imports and sales of it. Japan, where there is actually a hijiki industry, just advised moderation.

What about seaweed from the coast of Maine—domestic, commercially harvested seaweed from New England? Thankfully, only one type, a type of kelp, had significant levels of arsenic. But, it would take more than a teaspoon to exceed the provisional daily limit for arsenic, and, at that point, you’d be exceeding the upper daily limit for iodine by about 3,000 percent, which is ten times more than reported in a life-threatening case report attributed to a kelp supplement.

I recommend avoiding hijiki due to its excess arsenic content and avoiding kelp due to its excess iodine content, but all other seaweeds should be fine, as long as you don’t eat them with too much rice.

In the report mentioned earlier where we learned that rice has more of the toxic inorganic arsenic than fish, we can see that there are 88.7 micrograms of inorganic arsenic per kilogram of raw white rice. What does that mean? That’s only 88.7 parts per billion, which is like 88.7 drops of arsenic in an Olympic-size swimming pool of rice. How much cancer risk are we talking about? To put it into context, the “usual level of acceptable risk for carcinogens” is one extra cancer case per million. That’s how we typically regulate cancer-causing substances. If a chemical company wants to release a new chemical, we want them to show that it doesn’t cause more than one in a million excess cancer cases.

The problem with arsenic in rice is that the excess cancer risk associated with eating just about a half cup of cooked rice a day could be closer to one in ten thousand, not one in a million, as you can see at 4:07 in my video. That’s a hundred times the acceptable cancer risk. The FDA has calculated that one serving a day of the most common rice, long grain white, would cause not 1 in a million extra cancer cases, but 136 in a million.

And that’s just the cancer effects of arsenic. What about all the non-cancer effects? The FDA acknowledges that, in addition to cancer, the toxic arsenic found in rice “has been associated with many non-cancer effects, including ischemic heart disease, diabetes, skin lesions, renal [kidney] disease, hypertension, and stroke.” Why, then, did the FDA only calculate the cancer risks of arsenic? “Assessing all the risks associated with inorganic arsenic would take considerable time and resources and would delay taking any needed action to protect public health” from the risks of rice.

“Although physicians can help patients reduce their dietary arsenic exposure, regulatory agencies, food producers, and legislative bodies have the most important roles” in terms of public health-scale changes. “Arsenic content in U.S.-grown rice has been relatively constant throughout the last 30 years,” which is a bad thing.

“Where grain arsenic concentration is elevated due to ongoing contamination, the ideal scenario is to stop the contamination at the source.” Some toxic arsenic in foods is from natural contamination of the land, but soil contamination has also come from the dumping of arsenic-containing pesticides, as well as the use of arsenic-based drugs in poultry production and then the spreading of arsenic-laced chicken manure on the land. Regardless of why south central U.S. rice paddies are so contaminated, we shouldn’t be growing rice in arsenic-contaminated soil.

What does the rice industry have to say for itself? Well, it started a website called ArsenicFacts. Its main argument appears to be that arsenic is everywhere, we’re all exposed to it every day, and it’s in most foods. But shouldn’t we try to cut down on the most concentrated sources? Isn’t that like saying look, diesel exhaust is everywhere, so why not suck on a tailpipe? The industry website quotes a nutrition professor saying, “All foods contain arsenic. So, if you eliminate arsenic from your diet, you will decrease your risk…and you’ll die of starvation.” That’s like Philip Morris saying that the only way to completely avoid secondhand smoke is to never breathe—but then you’ll asphyxiate, so you might as well just start smoking yourself. If you can’t avoid it, you might as well consume the most toxic source you can find?!

That’s the same tack the poultry industry took. Arsenic and chicken? “No need to worry” because there’s a little arsenic everywhere. That’s why it’s okay the industry fed chickens arsenic-based drugs for 70 years. If you can’t beat ’em, join ’em.

How can the rice industry get away with selling a product containing a hundred times the acceptable cancer risk? I cover that and so much more in my other videos on arsenic and rice, which also include concrete recommendations on how to mediate your risk.


Check out:

Pesticides were not the only source of arsenic. Poultry poop, too, if you can believe it! I cover that story in Where Does the Arsenic in Chicken Come From? and Where Does the Arsenic in Rice, Mushrooms, and Wine Come From?.

Chronic low-dose arsenic exposure is associated with more than just cancer. See The Effects of Too Much Arsenic in the Diet.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

The Effects of Too Much Arsenic in the Diet

Even at low-level exposure, arsenic is not just a class I carcinogen, but may also impair our immune function and increase our risk of cardiovascular disease and diabetes.

When people hear about arsenic, they think of it as an acute poison, and, indeed, a tiny amount—a hundred milligrams, about one-tenth the weight of a paperclip—could kill you in an hour. But, there is also chronic arsenic poisoning, where even a dose 10,000 times as small can be harmful if you’re exposed day-after-day for years at a time as I discuss in my video The Effects of Too Much Arsenic in the Diet. Chief among the concerns is cancer.

Arsenic is classified as a class I carcinogen, which is the highest level and includes things known to cause cancer in humans. Other class I carcinogens are asbestos, cigarette smoke, formaldehyde, plutonium, and processed meat (the consumption of bacon, ham, hot dogs, deli meat, and the like). So, arsenic is pretty bad, to say the least, implicated in tens of thousands—or even hundreds of thousands—of cancer cases worldwide every year.

Of course, cancer is our number-two killer. What about heart disease, our leading cause of death? “Long-term exposure to low to moderate arsenic levels was associated with cardiovascular disease incidence and mortality,” meaning heart attacks and strokes.

Arsenic is also considered an immunotoxicant, meaning it’s toxic to our immune system. How do we know that? There’s a virus called varicella, which is what causes chickenpox—the first time we get it. Our immune system is able to stamp it down but not stamp it out. The virus retreats into our nerve cells where it lies in wait for our immune function to dip. And, when it does, the virus re-emerges and causes a disease called shingles. We’ve all been exposed to the virus, but only about one in three of us will get shingles because our immune system is able to keep it at bay. However, the virus can slip its muzzle as we get older or immunosuppressed, for instance, if we’re given arsenic chemotherapy. Shingles is a common side effect, because the arsenic drugs not only kill the cancer but also some of our immune cells, too. That’s at high doses, though. Might even low doses of arsenic, like the kind we’re exposed to in our daily diet, impact our immune function? Researchers tested the levels of arsenic in the urine of thousands of Americans, along with their levels of anti-virus antibodies, and, indeed, they found that the more arsenic the subjects had flowing through their bodies, the lower their defenses.

And, if you’re pregnant, arsenic can pass to your baby, possibly increasing the risk of miscarriage or infant mortality, and “may affect an infant’s immune development and susceptibility to infections early in life.” Indeed, a study out of New Hampshire on infant infections in relation to prenatal arsenic exposure found that the more arsenic the mom was exposed to during pregnancy, the higher the baby’s risk of infection during infancy. However, “it’s unknown whether arsenic-induced epigenetic changes are transgenerational”—that is, whether changes in gene expression can impact the health of not only your own children but your grandchildren as well. Regardless, arsenic exposure isn’t good for mom’s own health, as it is associated with increasing blood pressure.

Hold on. If arsenic suppresses immune system function, then, as a silver lining, would we, for example, have fewer allergies, which is a kind of over-reaction of the immune system? Apparently not. Those with higher arsenic levels tend to have higher rates of food allergies, tend not to sleep as well, and tend not to feel as well. When people were asked how they would rate their health, those reporting “excellent” or “very good” tended to have lower levels of arsenic, compared to those who reported their general health condition as “good,” “fair,” or “poor,” who tended to have higher arsenic levels.

What about diabetes? You can see the results of two dozen population studies on arsenic exposure and confirmed diabetes at 4:07 in my video. Any result above one suggests increased risk for diabetes, and any result below one suggests lower risk. The findings? “Our results support an association between ingested arsenic and DM [diabetes] in humans.” Population studies can’t prove cause and effect, though. “While it would be nice to demonstrate a cause and effect relationship…is it necessary?”

We know arsenic is a carcinogen. We know it causes cancer. What more do we need to take steps to decrease our exposure?

Where is arsenic found in our diet? See my videos Where Does the Arsenic in Chicken Come From?  and Where Does the Arsenic in Rice, Mushrooms, and Wine Come From?.


 Ready for a deep dive into the rice issue? Check out:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations: