What White Blood Cell Count Should We Shoot for?

At the start of my video What Does a Low White Blood Cell Count Mean?, you can see what it looks like when you take a drop of blood, smear it between two pieces of glass, and view at it under a microscope: a whole bunch of little, round, red blood cells and a few big, white blood cells. Red blood cells carry oxygen, while white blood cells are our immune system’s foot soldiers. We may churn out 50 billion new white blood cells a day. In response to inflammation or infection, that number can shoot up to a 100 billion or more. In fact, pus is largely composed of: millions and millions of white blood cells.

Testing to find out how many white blood cells we have at any given time is one of the most common laboratory tests doctors order. It’s ordered it hundreds of millions of times a year. If, for example, you end up in the emergency room with abdominal pain, having a white blood cell count above about 10 billion per quart of blood may be a sign you have appendicitis. Most Americans fall between 4.5 and 10, but most Americans are unhealthy. Just because 4.5 to 10 is typical doesn’t mean it’s ideal. It’s like having a “normal” cholesterol level in a society where it’s normal to die of heart disease, our number-one killer. The average American is overweight, so if your weight is “normal,” that’s actually a bad thing.

In fact, having excess fat itself causes inflammation within the body, so it’s no surprise that those who are obese walk around with two billion more white cells per quart of blood. Given that, perhaps obese individuals should have their own “normal” values. As you can see at 2:06 in my video, if someone with a 47-inch waist walks into the ER with a white blood cell count of 12, 13, or even 14, they may not have appendicitis or an infection. That may just be their normal baseline level, given all the inflammation they have in their body from the excess fat. So, normal levels are not necessarily healthy levels.

It’s like smoking. As you can see at 2:31 in my video, if you test identical twins and one smokes but the other doesn’t, the smoker is going to end up with a significantly higher white cell count. In Japan, for example, as smoking rates have steadily dropped, so has the normal white count range. In fact, it’s dropped such that about 8 percent of men who have never smoked would now be flagged as having abnormally low white counts if you used a cut-off of 4. But, when that cut-off of 4 was set, most people were smoking. So, maybe 3 would be a better lower limit. The inflammation caused by smoking may actually be one of the reasons cigarettes increase the risk of heart attacks, strokes, and other inflammatory diseases. So, do people who have lower white counts have less heart disease, cancer, and overall mortality? Yes, yes, and yes. People with lower white blood cell counts live longer. Even within the normal range, every one point drop may be associated with a 20 percent drop in the risk of premature death.

As you can see at 3:39 in my video, there is an exponential increase in risk in men as white count goes up, even within the so-called normal range, and the same is found for women. The white blood cell count is a “stable, well-standardized, widely available and inexpensive measure of systemic inflammation.” In one study, half of the women around 85 years of age who had started out with white counts under 5.6 were still alive, whereas 80 percent of those who started out over 7 were dead, as you can see at 4:05 in my video—and white blood cell counts of 7, 8, 9, or even 10 would be considered normal. Being at the high end of the normal range may place one at three times the risk of dying from heart disease compared to being at the lower end.

The same link has been found for African-American men and women, found for those in middle age, found at age 75, found at age 85, and found even in our 20s and 30s: a 17 percent increase in coronary artery disease incidence for each single point higher.

As you can see at 5:00 in my video, the higher your white count, the worse your arterial function may be and the stiffer your arteries may be, so it’s no wonder white blood cell count is a useful predictor of high blood pressure and artery disease in your heart, brain, legs, and neck. Even diabetes? Yes, even diabetes, based on a compilation of 20 different studies. In fact, it may be associated with everything from fatty liver disease to having an enlarged prostate. And, having a higher white blood cell count is also associated with an increased risk of dying from cancer. So, what would the ideal range be? I cover that in my video What Is the Ideal White Blood Cell Count?.

A higher white blood cell count may be an important predictor for cardiovascular disease incidence and mortality, decline in lung function, cancer mortality, all-cause mortality, heart attacks, strokes, and premature death in general. This is no surprise, as the number of white blood cells we have circulating in our bloodstreams are a marker of systemic inflammation. Our bodies produce more white blood cells day to day in response to inflammatory insults.

We’ve known about this link between higher white counts and heart attacks since the 1970s, when we found that higher heart attack risk was associated with higher white blood cell counts, higher cholesterol levels, and higher blood pressures, as you can see at 0:53 in my video What Is the Ideal White Blood Cell Count?. This has been found in nearly every study done since then. There are decades of studies involving hundreds of thousands of patients showing dramatically higher mortality rates in those with higher white counts. But why? Why does white blood cell count predict mortality? It may be because it’s a marker of inflammation and oxidation in the body. In fact, it may even be a biomarker for how fast we are aging. It may be more than just an indicator of inflammation—it may also be an active player, contributing directly to disease via a variety of mechanisms, including the actual obstruction of blood flow.

The average diameter of a white blood cell is about seven and a half micrometers, whereas our tiniest vessels are only about five micrometers wide, so the white blood cell has to squish down into a sausage shape in order to squeeze through. When there’s inflammation present, these cells can get sticky. As you can see at 2:20 in my video, a white blood cell may plug up a vessel as it exits a small artery and tries to squeeze into a capillary, slowing down or even momentarily stopping blood flow. And, if it gets stuck there, it can end up releasing all of its internal weaponry, which is normally reserved for microbial invaders, and damage our blood vessels. This may be why in the days leading up to a stroke or heart attack, you may find a spike in the white cell count.

Whether white count is just a marker of inflammation or an active participant, it’s better to be on the low side. How can we reduce the level of inflammation in our body? Staying away from even second-hand smoke can help drop your white count about half of a point. Those who exercise also appear to have an advantage, but you don’t know if it’s cause and effect unless you put it to the test. In one study, two months of Zumba classes—just one or two hours a week—led to about a point and a half drop in white count. In fact, that may be one of the reasons exercise is so protective. But is that just because they lost weight?

Fitness and fatness both appear to play a role. More than half of obese persons with low fitness—51.5 percent—have white counts above 6.6, but those who are more fit or who have less fat are less likely to have counts that high, as you can see at 3:47 in my video. Of course, that could just be because exercisers and leaner individuals are eating healthier, less inflammatory diets. How do we know excess body fat itself increases inflammation, increases the white count? You’d have to find some way to get people to lose weight without changing their diet or exercise habit. How’s that possible? Liposuction. If you suck about a quart of fat out of people, you can significantly drop their white count by about a point. Perhaps this should get us to rethink the so-called normal reference range for white blood cell counts. Indeed, maybe we should revise it downward, like we’ve done for cholesterol and triglycerides.

Until now, we’ve based normal values on people who might be harboring significant background inflammatory disease. But, if we restrict it to those with normal C-reactive protein, another indicator of inflammation, then instead of “normal” being 4.5 to 10, perhaps we should revise it closer to 3 to 9.

Where do the healthiest populations fall, those not suffering from the ravages of chronic inflammatory diseases, like heart disease and common cancers? Populations eating diets centered around whole plant foods average about 5, whereas it was closer to 7 or 8 in the United States at the time. How do we know it isn’t just genetic? As you can see at 5:38 in my video, if you take those living on traditional rural African diets, who have white blood cell counts down around 4 or 5, and move them to Britain, they end up closer to 6, 7, or even 8. Ironically, the researchers thought this was a good thing, referring to the lower white counts on the “uncivilized” diet as neutropenic, meaning having too few white blood cells. They noted that during an infection or pregnancy, when more white cells are needed, the white count came right up to wherever was necessary. So, the bone marrow of those eating traditional plant-based diets had the capacity to create as many white cells as needed but “suffers from understimulation.”

As you can see at 6:26 in my video, similar findings were reported in Western plant eaters, with an apparent stepwise drop in white count as diets got more and more plant based, but could there be non-dietary factors, such as lower smoking rates, in those eating more healthfully? What we need is an interventional trial to put it to the test, and we got one: Just 21 days of removing meat, eggs, dairy, alcohol, and junk affected a significant drop in white count, even in people who started out down at 5.7.

What about patients with rheumatoid arthritis who started out even higher, up around 7? As you can see at 7:03 in my video, there was no change in the control group who didn’t change their diet, but there was a 1.5 point drop within one month on whole food plant-based nutrition. That’s a 20 percent drop. That’s more than the drop-in inflammation one might get quitting a 28-year pack-a-day smoking habit. The most extraordinary drop I’ve seen was in a study of 35 asthmatics. After four months of a whole food plant-based diet, their average white count dropped nearly 60 percent, from around 12 down to 5, though there was no control group nor enough patients to achieve statistical significance.

If white blood cell count is such a clear predictor of mortality and is so inexpensive, reliable, and available, why isn’t it used more often for diagnosis and prognosis? Maybe it’s a little too inexpensive. The industry seems more interested in fancy new risk factors it can bill for.

I touch on the health of the rural Africans I discussed in How Not to Die from Heart Disease.


For more on fighting inflammation, see:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Garlic Powder to Lower Lead Levels

There are so-called chelation drugs that can be taken for acute, life-threatening lead poisoning—for instance if your two-year-old swallowed one of the little lead weights her grandma was using while sewing curtains and the doctor happened to miss it on x-ray, so it stayed lodged inside her until she died with a blood lead level of 283 mcg/dcl, a case I discuss in my video Best Foods for Lead Poisoning: Chlorella, Cilantro, Tomatoes, Moringa?.

However, for lower grade, chronic lead poisoning, such as at levels under 45 mg/dL, there were no clear guidance as to whether these chelation drugs were effective. When they were put to the test, the drugs failed to bring down lead levels long term. Even when they worked initially, in dose after dose, the lead apparently continued to seep from the patients’ bones, and, by the end of the year, they ended up with the same lead levels as the sugar pill placebo group, as you can see at 0:50 in my video. It was no surprise, then, that even though blood lead levels dipped at the beginning, researchers found no improvements in cognitive function or development.

Since much of lead poisoning is preventable and the drugs don’t seem to work in most cases, that just underscores the need “to protect children from exposure to lead in the first place.” Despite the medical profession’s “best intentions to do something to help these kids…drug therapy is not the answer.” Yes, we need to redouble efforts to prevent lead poisoning in the first place, but what can we do for the kids who’ve already been exposed?

The currently approved method, these chelating drugs that bind and remove lead from our tissues, “lack[s]…safety and efficacy when conventional chelating agents are used.” So, what about dietary approaches? Plants produce phytochelatins. All higher plants possess the capacity to synthesize compounds that bind up heavy metals to protect themselves from the harmful effects, so what if we ate the plants? “Unlike other forms of treatment (e.g., pharmacotherapy with drugs), nutritional strategies carry the promise of a natural form of therapy that would presumably be cheap and with few to no side effects.” Yes, but would it work when the drugs didn’t?

We had learned that a meal could considerably cut down on lead absorption, but “the particular components of food intake that so dramatically reduce lead absorption” were uncertain at the time. Although the calcium content of the meal appeared to be part of it, milk didn’t seem to help and even made things worse. What about calcium supplements? Some assert that calcium supplements may help in reducing lead absorption in children, but “recommendations…must be based on evidence rather than conviction.” What’s more, those assertions are based in part on studies on rodents, and differences in calcium absorption and balance between rats and humans make extrapolation tricky. What you have to do is put it to the test. Researchers found that even an extra whopping 1,800 mg of calcium per day had no effect on blood lead levels. Therefore, the evidence doesn’t support conclusions that calcium supplements help.

What about whole foods? Reviews of dietary strategies to treat lead toxicity say to eat lots of tomatoes, berries, onions, garlic, and grapes, as they are natural antagonists to lead toxicity and therefore should be consumed on a regular basis. Remember those phytochelatins? Perhaps eating plants might help detoxify the lead in our own bodies or the bodies of those we eat.

These natural phytochelatin compounds work so well that we can use them to clean up pollution. For example, the green algae chlorella can suck up lead and hold onto it, so what if we ate it? If it can clean up polluted bodies of water, might it clean up our own polluted bodies? We don’t know, because we only have studies on mice, not men and women.

So, when you hear how chlorella detoxifies, they’re talking about the detoxification of rat testicles. Yes, a little sprinkle of chlorella might help your pet rat, or perhaps you could give them some black cumin seeds or give them a sprig of cilantro, but when you hear how cilantro detoxifies against heavy metals, I presume you don’t expect the researchers to be talking about studies in rodents. If we’re interested in science protecting our children, not just their pets, we’re out of luck.

The same is true with moringa, tomatoes, flaxseed oil, and sesame seed oil, as well as black grapes, and black, white, green, and red tea. There are simply no human studies to guide us.

Dietary strategies for the treatment of lead toxicity are often based on rodent studies, but, for tofu, at least, there was a population study of people that showed lower lead levels in men and women who ate more tofu. The researchers controlled for a whole bunch of factors, so it’s not as if tofu lovers were protected just because they smoked less or ate less meat, but you can’t control for everything.

Ideally, we’d have a randomized, placebo-controlled study. Researchers would take a group of people exposed to lead, split them into two groups, with half given food and the other half given some kind of identical placebo food, and see what happens. It’s easy to do this with drugs because you just use look-alike sugar pills as placebos so people don’t know which group they’re in, but how do you make placebo food? One way to do disguised food interventions is to use foods that are so potent they can be stuffed into a pill—like garlic. There had been various studies measuring the effects of garlic in rats and looking at garlic as a potential antidote for lead intoxication distributed among different mouse organs, but who eats mouse organs? One animal study did have some direct human relevance, though, looking at the effect of garlic on lead content in chicken tissues. The purpose was to “explore the possible use of garlic to clean up lead contents in chickens which”—like all of us on planet Earth—“had been exposed to lead pollution and consequently help to minimize the hazard” of lead-polluted chicken meat.

And…it worked! As you can see at 1:59 in my video Best Food for Lead Poisoning: Garlic, feeding garlic to chickens reduced lead levels in the “edible mass of chicken” by up to 75 percent or more. Because we live in a polluted world, even if you don’t give the chickens lead and raise them on distilled water, they still end up with some lead in their meat and giblets. But, if you actively feed them lead for a week, the levels get really high. When you give them the same amount of lead with a little garlic added, however, much less lead accumulates in their bodies.

What’s even more astonishing is that when researchers gave them the same amount of lead—but this time waited a week before giving them the garlic—it worked even better. “The value of garlic in reducing lead concentrations…was more pronounced when garlic was given as a post-treatment following the cessation of lead administration”—that is, after the lead was stopped and had already built up in their tissues. We used to think that “the beneficial effect of garlic against lead toxicity was primarily due to a reaction between lead and sulfur compounds in garlic” that would glom on to lead in the intestinal tract and flush it out of the body. But, what the study showed is that garlic appears to contain compounds that can actually pull lead not only out of the intestinal contents, but also out of the tissues of the body. So, the “results indicate that garlic contain chelating compounds capable of enhancing elimination of lead,” and “garlic feeding can be exploited to safeguard human consumers by minimizing lead concentrations in meat….”

If garlic is so effective at pulling lead out of chickens’ bodies, why not more directly exploit “garlic feeding” by eating it ourselves? Well, there had never been a study on the ability of garlic to help lead-exposed humans until…2012? (Actually, I’m embarrassed to say I missed it when the study was first published. That was back when I was just getting NutritionFacts.org up and running. Now that we have staff and a whole research team, hopefully important studies like this won’t slip through the cracks in the future.)

The study was a head-to-head comparison of the therapeutic effects of garlic versus a chelation therapy drug called D-penicillamine. One hundred and seventeen workers exposed to lead in the car battery industry were randomly assigned into one of two groups and, three times a day for one month, either got the drug or an eighth of a teaspoon of garlic powder compressed into a tablet, which is about the equivalent of two cloves of fresh garlic a day. As expected, the chelation drug reduced blood lead levels by about 20 percent—but so did the garlic. The garlic worked just as well as the drug and, of course, had fewer side effects. “Thus, garlic seems safer clinically and as effective,” but saying something is as effective as chelation therapy isn’t saying much. Remember how chelation drugs can lower blood levels in chronic lead poisoning, but they don’t actually improve neurological function?

Well, after treatment with garlic, significant clinical improvements were seen, including less irritability, fewer headaches, and improvements in reflexes and blood pressure, but these improvements were not seen in the drug group. They weren’t seen after treatment with the chelation therapy drug. So, garlic was safer and more effective. “Therefore, garlic can be recommended for the treatment of mild-to-moderate lead poisoning.


 There are also some human studieson vitamin C. Check out Can Vitamin C Help with Lead Poisoning?.

For even more lead videos, see:

To learn more about chlorella, see:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Adult Exposure to Lead

“Children in approximately 4 million households in the United States are being exposed to high levels of lead.” As I discuss in my video The Effects of Low-Level Lead Exposure in Adults, “Despite the dramatic decline in children’s blood-lead concentrations over the decades, lead toxicity remains a major public health problem”—and not just for children. Yes, lead is “a devastating neurotoxin,” with learning disabilities and attention deficits in children beginning around blood lead levels of 10 mg/dL, which is when you start seeing high blood pressure and nerve damage in adults, as you can see at 0:41 in my video. But, the blood levels in American adults these days are down around 1 mg/dL, not 10 mg/dL, unless you work or play in an indoor firing range, where the lead levels in the air are so high that more than half of recreational target shooters have levels over 10 mg/dL or even 25 mg/dL.

In fact, even open-air outdoor ranges can be a problem. Spending just two days a month at such a range may quadruple blood lead levels and push them up into the danger zone. What if you don’t use firearms yourself but live in a house with someone who does? The lead levels can be so high that the Centers for Disease Control and Prevention advises those who go to shooting ranges to take “measures to prevent take-home exposure including showering and changing into clean clothes after shooting…, storing clean clothes in a separate bin from contaminated clothing, laundering of non disposable outer protective clothing…and leaving at the range shoes worn inside the firing range,” among other actions. Even if none of that applies and your blood levels are under 10 mg/dL, there is still some evidence of increased risk of hand tremors, high blood pressure, kidney damage, and other issues, as you can see at 1:44 in my video. But what if you’re down around a blood lead level of 1 mg/dL, like most people?

“Blood lead levels in the range currently considered acceptable are associated with increased prevalence of gout,” a painful arthritis. In fact, researchers found that blood levels as low as approximately 1.2 mg/dL, which is close to the current American average, can be associated with increased prevalence of gout. So, this means that “very low levels of lead may still be associated with health risks,” suggesting “there is no such thing as a ‘safe’ level of exposure to lead.”

Where is the lead even coming from? Lead only circulates in the body for about a month, so if you have lead in your bloodstream, it’s from some ongoing exposure. Most adults don’t eat peeling paint chips, though, and autos aren’t fueled by leaded gas anymore. There are specific foods, supplements, and cosmetics that are contaminated with lead (and I have videos on all those topics), but for most adults, the source of ongoing lead exposure is from our own skeleton. I just mentioned that lead only circulates in the body for about a month. Well, where does it go after that? It can get deposited in our bones. “More than 90% of the total body lead content resides in the bone, where the half-life is decades long,” not just a month. So, half or more of the lead in our blood represents lead from past exposures just now leaching out of our bones back into our bloodstream, and this “gradual release of lead from the bone serves as a persistent source of toxicity long after cessation of external exposure,” that is, long after leaded gasoline was removed from the pumps for those of us that who were around back before the 1980s.

So, the answer to where the lead comes from is like Pogo’s We’ve met the enemy and he is us or that classic horror movie scene where the call is coming from inside the house.

The amount of lead in our bones can actually be measured, and research shows higher levels are associated with some of our leading causes of death and disability, from tooth decay and miscarriages to cognitive decline and cataracts. “Much of the lead found in adults today was deposited decades ago. Thus, regulations enacted in the 1970s were too late” for many of us, but at least things are going in the right direction now. The “dramatic societal decreases” in blood lead in the United States since the 1970s have been associated with a four- to five-point increase in the average IQs of American adults. Given that, a “particularly provocative question is whether the whole country suffered brain damage prior to the 1980 decreases in blood lead. Was ‘the best generation’ really the brain damaged generation?”

I’m such a sucker for science documentaries, and my favorite episode of Cosmos: A Spacetime Odyssey was The Clean Room, which dealt with this very issue. Trivia: Carl Sagan was my next-door neighbor when I was at Cornell!

If you want to find out How the Leaded Gas Industry Got Away with It, check out that video. How the Lead Paint Industry Got Away with It is similarly scandalous. Lead in Drinking Water offers the modern-day tale of what happened in Flint, Michigan, and “Normal” Blood Lead Levels Can Be Toxic explores the impacts on childhood development.


I close out this extended video series on lead with information on what we can do about it:

Interested in learning more about lead being absorbed and released in our bones, and how calcium supplements may affect that process? See The Rise in Blood Lead Levels at Pregnancy and Menopause and Should Pregnant Women Take Calcium Supplements to Lower Lead Levels?.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations: