Supplement Labeling Fraud is Widespread

The regulation of dietary supplements in the United States has been described as “too little, too late.” “Dietary supplements may be adulterated with dangerous compounds, be contaminated, fail to contain the purported active ingredient, or contain unknown doses of the ingredients stated on the label; be sold at toxic dosages; or produce harmful effects” in other ways. As I discuss in my video Black Raspberry Supplements Put to the Test, “[i]f the composition and quality of ingredients cannot be reliably ensured, the validity of research on dietary supplements is questionable. Moreover, the health of the US public is put at risk.”

A private, third-party company that has independently tested thousands of supplements “identifies approximately 1 in 4 with a quality problem” because it either does not contain what it says it contains, is “of substandard quality,” or is contaminated in some way.

Let’s look at an example. I’ve produced a few videos on the remarkable properties of black raspberries, including one on oral cancer. These berries can’t always be found fresh or frozen, so how about black raspberry supplements, which are available in stores and online? At 0:56 in my video, I show a bottle of Pure Black Raspberry by Pure Health, that says “Fresh – Raw – Pure” right on the label. Sounds good, don’t you think? When we look at the back of the bottle, the label says it contains only seedless black raspberry powder “and absolutely nothing else!” It’s nice to see there are no fillers or artificial ingredients, so why not plunk down $23.77 for a bottle? Well, it turns out we’ve been had.

The first clue is that the image on the front of the label is actually blackberries that had been Photoshopped to look like black raspberries. Pure Health couldn’t even be bothered to put a real image on its fake supplement! The second clue is that the “[d]ark olive-brown-black powder in [the] capsule did not look like berry powder and had a medicinal odor,” according to the researchers. So, it was put it to the test, and, indeed, there was no black raspberry at all. Instead of promoting the fact that the Pure Black Raspberry contains only seedless black raspberry powder “and absolutely nothing else,” the company should have just listed that the bottle contains “absolutely nothing” period—or, at least we hope it contains nothing. Who knows what’s actually in the capsules!

The researchers tested every black raspberry product they could find, and, even of the ones with the correct picture on the front and with powder that actually looked like it came from real black raspberries, more than a third appeared to have no black raspberry fruit at all. “At the moment, a consumer who assumes the US dietary supplement marketplace is free from risk”—or is even honest—“is unfortunately naive.”

How widespread is this deception? Researchers used DNA fingerprinting techniques to test the authenticity of 44 herbal supplements from a dozen different companies. As you can see at 2:33 in my video, less than half of the supplements were authentic and actually contained what they said they did. Most contained plants not listed on the label and product substitution, and many “contained contaminants and or fillers,” also not listed on the label. This isn’t just fraud: Some of this deception could really hurt people. For example, one St. John’s wort supplement contained no St. John’s wort at all. Instead, it was actually senna, which is an herbal laxative that “can cause adverse effects such as chronic diarrhea, cathartic colon, liver damage, abdominal pain, epidermal [skin] breakdown and blistering.” In the video at 3:09, you can see how the 12 companies did. Tested products from only 2 of the 12 companies appeared to be completely authentic, with the remaining 10 companies’ products containing filler, product substitution, and/or contaminents. Herbs only work if they’re actually present. Indeed, this study found that 80 percent of the manufacturers in the supplement “industry suffer[] from unethical activities…”.

“Until US dietary supplement products are better regulated and quality control standards for safety, purity, and dosage are defined and endorsed, the safer source for dietary phenolics,” or phytonutrients, “as a consumer is from food intake.”


For more on supplement company shenanigans, see:

What’s so special about black raspberries? Reversal of cancer progression, for starters! See Black Raspberries vs. Oral Cancer and Best Fruits for Cancer Prevention.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Is Milk Lowering Uric Acid a Good Thing or a Bad Thing?

Parkinson’s disease, the second most common neurodegenerative disorder after Alzheimer’s, is characterized by a slowness of movement, rigidity, tremor, and stooping posture, all of which worsen over time. Non-movement symptoms such as cognitive impairment and sleep, smell, and mood disturbances occur as the disease spreads to other areas of the brain. The cause of Parkinson’s is perhaps “one of the important questions posed by the neurobiology [science] of aging.” For example, why is the consumption of dairy products associated with increased risk of Parkinson’s? Perhaps because they contribute to our exposure to pesticides and other neurotoxins like dieldrin, which continues to be found in the autopsied brains of Parkinson’s victims. Even though dieldrin was banned decades ago, it lingers in the environment and we “continue to be exposed to the pesticide through contaminated dairy and meats…”

The cause of Parkinson’s “is unlikely to be due to milk compounds such as calcium, vitamin D, total fat, or total protein as these compounds are not associated with [the disease] when derived from other sources.” However, it could be lactose, the milk sugar, perhaps accounting for the increased associated risk of death and bone fractures, as well as Parkinson’s. Earlier onset of Huntington’s disease has also been identified. There is, however, a third possibility.

As I discuss in my video Parkinson’s Disease and the Uric Acid Sweet Spot, milk lowers uric acid levels, and uric acid may be protective against Huntington’s and also slow the decline caused by Parkinson’s. More importantly, it may lower the risk of getting Parkinson’s in the first place. Why? Perhaps because uric acid is an important antioxidant in the brain, something we’ve known for more than 30 years. We can demonstrate uric acid’s importance directly on human nerve cells in a petri dish. When the pesticide rotenone is added, oxidative stress goes up. Add the pro-oxidant homocysteine, and it goes up even more. But, when uric acid is added, it completely suppresses the oxidative stress caused by the pesticide.

Drinking milk, however, has a uric acid-lowering effect. In the paper making this assertion, a study they cited was “A cute effect of milk on serum urate concentrations,” but that was just a cute typothey meant Acute effect. Indeed, drink cow’s milk, and, within hours, uric acid levels drop 10 percent. Drink soymilk, and, within hours, they go up 10 percent. Now, for gout, a painful arthritic disease caused by too much uric acid, the uric acid-lowering effect of dairy is a good thing—but uric acid is “a double-edged sword.”

If our uric acid levels are too high, we can get gout, but, if they’re too low, it may increase our risk of neurodegenerative diseases, such as Alzheimer’s, Huntington’s, Parkinson’s, and multiple sclerosis.

Incidence rates of gouty arthritis over five years indicate that if our uric acid is over 10.0 mg/dl, we have a 30 percent chance of suffering an attack of gout within the next 5 years. However, at levels under 7.0 mg/dl, our risk is less than 1 percent, so it might make sense to have levels as high as possible without going over 7.0 to protect the brain without risking our joints. But having excessive uric acid in the blood puts more than just our joints in jeopardy. Yes, having levels that are too low may increase our risk of MS, Parkinson’s, Alzheimer’s, and even cancer, but having levels that are too high may increase our risk of gout, kidney disease, and heart disease.

In fact, having a uric acid level over 7.0 mg/dl isn’t only associated with an increased risk of gout, but also an increased risk of dying from all causes. However, having a low uric acid level may also shorten our lifespan by increasing mortality. High uric acid levels are associated with increased risk of death from heart disease, but low uric acid levels are associated with increased risk of fatal stroke. So, keeping uric acid at optimum levels, the sweet spot between 5.0 and 7.0 mg/dl, may protect the brain in more ways than one.

If we measure the uric acid levels in patients with Parkinson’s, they come in around 4.6 mg/dl, which may help explain why dairy consumption may increase risk for Parkinson’s since milk pushes down uric acid levels. Dairy intake may also explain the differences in uric acid levels among meat-eaters, vegetarians, and vegans. In the graph in my video, you can see that vegan men have significantly higher uric acid levels at 5.7 mg/dl than vegetarians, presumably because vegans don’t drink milk, and those who both eat meat and consume milk fall between the vegans and vegetarians.


For more on Parkinson’s see:

Uric acid as an antioxidant? I’ve touched on that before in Miocene Meteorites and Uric Acid.

If uric acid levels are too high consider cutting down on Flesh and Fructose and eating cherries. (See Gout Treatment with a Cherry on Top and Treating Gout with Cherry Juice for more information.) Also, check out Preventing Gout Attacks with Diet.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations:

The Best Source of Resistant Starch

Resistant starch wasn’t discovered until 1982. Before that, we thought all starch could be digested by the digestive enzymes in our small intestine. Subsequent studies confirmed that there are indeed starches that resist digestion and end up in our large intestine, where they can feed our good bacteria, just like fiber does. Resistant starch is found naturally in many common foods, including grains, vegetables, beans, seeds, and some nuts, but in small quantities, just a few percent of the total. As I discuss in my video Getting Starch to Take the Path of Most Resistance, there are a few ways, though, to get some of the rest of the starch to join the resistance.

When regular starches are cooked and then cooled, some of the starch recrystallizes into resistant starch. For this reason, pasta salad can be healthier than hot pasta and potato salad can be healthier than a baked potato, but the effect isn’t huge. The resistant starch goes from about 3 percent up to 4 percent. The best source of resistant starch is not from eating cold starches, but from eating beans, which start at 4 or 5 percent and go up from there.

If you mix cooked black beans with a “fresh fecal” sample, there’s so much fiber and resistant starch in the beans that the pH drops as good bacteria churn out beneficial short-chain fatty acids, which are associated both directly and indirectly with lower colon cancer risk. (See Stool pH and Colon Cancer.) The more of this poopy black bean mixture you smear on human colon cancer, the fewer cancer cells survive.

Better yet, we can eat berries with our meals that act as starch blockers. Raspberries, for example, completely inhibit the enzyme that we use to digest starch, leaving more for our friendly flora. So, putting raspberry jam on your toast, strawberries on your corn flakes, or making blueberry pancakes may allow your good bacteria to share in some of the breakfast bounty.

Another way to feed our good bacteria is to eat intact grains, beans, nuts, and seeds. In one study, researchers split people into two groups and had them eat the same food, but in one group, the seeds, grains, beans, and chickpeas were eaten more or less in a whole form, while they were ground up for the other group. For example, for breakfast, the whole-grain group got muesli, and the ground-grain group had the same muesli, but it was blended into a porridge. Similarly, beans were added to salads for the whole-grain group, whereas they were blended into hummus for the ground-grain group. Note that both groups were eating whole grains—not refined—that is, they were eating whole foods. In the ground-grain group, though, those whole grains, beans, and seeds were made into flour or blended up.

What happened? Those on the intact whole-grain diet “resulted in a doubling of the amount excreted compared to the usual diet and produced an additional and statistically significant increase in stool mass” compared with those on the ground whole-grain diet, even though they were eating the same food and the same amount of food. Why? On the whole-grain diet, there was so much more for our good bacteria to eat that they grew so well and appeared to bulk up the stool. Even though people chewed their food, “[l]arge amounts of apparently whole seeds were recovered from stools,” but on closer inspection, they weren’t whole at all. Our bacteria were having a smorgasbord. The little bits and pieces left after chewing transport all this wonderful starch straight down to our good bacteria. As a result, stool pH dropped as our bacteria were able to churn out so many of those short-chain fatty acids. Whole grains are great, but intact whole grains may be even better, allowing us to feed our good gut bacteria with the leftovers.

Once in our colon, resistant starches have been found to have the same benefits as fiber: softening and bulking stools, reducing colon cancer risk by decreasing pH, increasing short-chain fatty acid production, reducing products of protein fermentation (also known as products of putrefaction), and decreasing secondary bile products.

Well, if resistant starch is so great, why not just take resistant starch pills? It should come as no surprise that commercial preparations of resistant starch are now available and “food scientists have developed a number of RS-enriched products.” After all, some find it “difficult to recommend a high-fiber diet to the general public.” Wouldn’t be easier to just enrich some junk food? And, indeed, you now can buy pop tarts bragging they contain “resistant corn starch.”

Just taking resistant starch supplements does not work, however. There have been two trials so far trying to prevent cancer in people with genetic disorders that put them at extremely high risk, with virtually a 100-percent chance of getting cancer, and resistant starch supplements didn’t help. A similar result was found in another study. So, we’re either barking up the wrong tree, the development of hereditary colon cancer is somehow different than regular colon cancer, or you simply can’t emulate the effects of naturally occurring dietary fiber in plant-rich diets just by giving people some resistant starch supplements.

For resistant starch to work, it has to get all the way to the end of the colon, which is where most tumors form. But, if the bacteria higher up eat it all, then resistant starch may not be protective. So, we also may have to eat fiber to push it along. Thus, we either eat huge amounts of resistant starch—up near the level consumed in Africa, which is twice as much as were tried in the two cancer trials—or we consume foods rich in both resistant starch and fiber. In other words, “[f]rom a public health perspective, eating more of a variety of food rich in dietary fibre including wholegrains, vegetables, fruits, and pulses [such as chickpeas and lentils] is a preferable strategy for reducing cancer risk.”


What’s so great about resistant starch? See my video Resistant Starch and Colon Cancer.

I first broached the subject of intact grains in Are Green Smoothies Bad for You?.

Why should we care about what our gut flora eats? See Gut Dysbiosis: Starving Our Microbial Self.

Did I say putrefaction? See Putrefying Protein and “Toxifying” Enzymes.

Berries don’t just help block starch digestion, but sugar digestion as well. See If Fructose Is Bad, What About Fruit?.

The whole attitude that we can just stuff the effects into a pill is a perfect example of reductionism at work. See Reductionism and the Deficiency Mentality and Why is Nutrition So Commercialized? for more on this.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live, year-in-review presentations: