Is White Rice a Yellow-Light or Red-Light Food?

Arsenic is not just considered to be a carcinogen; it’s also designated as a “nonthreshold carcinogen, meaning that any dose, no matter how small, carries some cancer risk”—so there really isn’t a “safe” level of exposure. Given that, it may be reasonable to “use the conservative ALARA” approach, reducing exposure As Low As Reasonably Achievable.

I have a low bar for recommending people avoid foods that aren’t particularly health-promoting in the first place. Remember when that acrylamide story broke, about the chemical found concentrated in french fries and potato chips? (See my video Acrylamide in French Fries for more.) My take was pretty simple: Look, we’re not sure how bad this acrylamide stuff is, but we’re talking about french fries and potato chips, which are not healthy anyway. So, I had no problem provisionally bumping them from my list of yellow-light foods into my red-light list, from “minimize consumption” to “ideally avoid on a day-to-day basis.”

One could apply the same logic here. Junk foods made out of brown rice syrup, rice milk, and white rice are not just processed foods, but also arsenic-contaminated processed foods, so they may belong in the red zone as red-light foods we should avoid. What about something like whole brown rice? That is more difficult, because there are pros to help outweigh the cons. I discuss this in my video Is White Rice a Yellow-Light or Red-Light Food?, where you can see a graphical depiction of my traffic light food system at 0:49.

The rice industry argues that the “many health benefits of rice consumption outweigh any potential risk,” which is the same sentiment you hear coming out of Japan about the arsenic-contaminated seaweed hijiki: Yes, “the cancer risk posed by hijiki consumption exceeds this acceptable [cancer risk] level by a factor of 10,” an order of magnitude, but the Japanese Ministry of Health stresses the “possible health benefits,” such as lots of fiber and minerals, as if hijiki was the only weed in the sea. Why not choose any of the other seaweeds and get all the benefits without the arsenic? So, when the rice industry says the “many health benefits of rice consumption outweigh any potential risk,” it’s as if brown rice was the only whole grain on the planet. Can’t you get the whole grain benefits without the risks by eating oatmeal, barley, or quinoa instead? Or, is there some unique benefit to rice, such that we really should try to keep brown rice in our diet?

Consumer Reports recommended moving rice to the yellow-light zone—in other words, don’t necessarily avoid it completely, but moderate your intake. The rice industry, in a fact sheet entitled “The Consumer Reports Article is Flawed,” criticized Consumer Reports for warning people about the arsenic levels in rice, saying “[t]here is a body of scientific evidence that establishes…the nutritional benefits of rice consumption; any assessment of the arsenic levels in rice that fails to take this information into account is inherently flawed and very misleading.” The rice industry cites two pieces of evidence. First, it asserts that rice-consuming cultures tend to be healthier, but is that because of, or despite, their white rice consumption? And what about the fact that rice-eating Americans tend to be healthier? Perhaps, but they also tend to eat significantly less saturated fat. So, once again, how do we know whether it’s because of—or despite—the white rice?

The rice industry could have cited the study I discuss at 3:12 in my video that showed that brown rice intake of two or more servings a week was associated with a lower risk of diabetes, but presumably, the reason it didn’t is because intake of white rice is associated with an increased risk of diabetes, and white rice represents 95 percent of the U.S. rice industry. Switching out a third of a serving of white rice a day for brown rice might lower diabetes risk by 16 percent, but switching out that same white rice for whole grains in general, like oats or barley, might work even better! So, other grains have about ten times less arsenic and are associated with even lower disease risk. No wonder the rice industry doesn’t cite this study.

It does cite the Adventist studies, though, and some in vitro data. For example, in a petri dish, as you can see at 4:05 in my video, there are rice phytonutrients that, at greater and greater doses, can inhibit the growth of colon cancer cells while apparently leaving normal colon cells alone, which is exciting. And, indeed, those who happened to eat those phytonutrients in the form of brown rice once or more a week between colonoscopies had a 40 percent lower risk of developing polyps. (The consumption of green leafy vegetables, dried fruit, and beans were also associated with lower polyp incidence.) But, the only reason we care about the development of polyps is that polyps can turn into cancer. But, there had never been studies on brown rice consumption and cancer…until now, which I discuss in my video Do the Pros of Brown Rice Outweigh the Cons of Arsenic?.

For those unfamiliar with my traffic light system, I talk about it in my book trailer. Check out How Not to Die: An Animated Summary.

Almost there! This is the corresponding article to the 12th in my 13-video series on arsenic in the food supply. If you missed any of the first 11 videos, see:

Ready for the finale? See Do the Pros of Brown Rice Outweigh the Cons of Arsenic?.

And you may be interested in Benefits of Turmeric for Arsenic Exposure.

In health,
Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Can Soy Prevent and Treat Prostate Cancer?

As I discuss in my video The Role of Soy Foods in Prostate Cancer Prevention and Treatment, a compilation of 13 observational studies on soy food consumption and the risk of prostate cancer found that soy foods appear to be “protective.” What are observational studies? As opposed to interventional studies, in observational studies, researchers observe what people are eating but don’t intervene and try to change their diets. In these studies, they observed that men who ate more soy foods had lower rates of prostate cancer, but the problem with observational studies is that there could be confounding factors. For example, “people who choose to eat soy also make other lifestyle decisions that lower the risk of cancer (e.g., lower fat intake, higher vegetable and fruit intake, more frequent exercise),” maybe that is why they have less cancer. Most of the studies tried to control for these other lifestyle factors, but you can’t control for everything. What’s more, most of the studies were done in Asia, so maybe tofu consumption is just a sign of eating a more traditional diet. Is it possible that the reason non-tofu consumers got more cancer is that they had abandoned their traditional diet? If only we could look at a Western population that ate a lot of soy. We can: the Seventh-Day Adventists.

In the 1970s, more than 12,000 Adventist men were asked about their use of soy milk and then were followed for up to 16 years to see who got cancer and who did not. So, what did they find? Frequent consumption of soy milk was associated with a whopping 70 percent reduction of the risk of prostate cancer, as you can see at 1:33 in my video. Similarly, in a multiethnic study that involved a number of groups, soy intake appeared protective in Latinos, too.

Prostate cells carry beta type estrogen receptors, which appear to act as a tumor suppressor, a kind of “gatekeeper…inhibiting invasion, proliferation and…preventing” the prostate cells from turning cancerous. And, those are the receptors targeted by the phytoestrogens in soy, like genistein, which inhibits prostate cancer cell invasion and spread in a petri dish at the kind of levels one might get consuming soy foods. The prevention of metastases is critical, as death from prostate cancer isn’t caused by the original tumor, but its spread throughout the body, which explains why it “is recommended that men with prostate cancer consume soy foods, such as soybeans, tofu, miso and tempeh.”

Wait a moment. Dean Ornish and his colleagues got amazing results, apparently reversing the progression of prostate cancer with a plant-based diet and lifestyle program. Was it because of the soy? Their study didn’t just include a vegan diet, but a vegan diet supplemented with a daily serving of tofu and a soy protein isolate powder. There have been studies showing that men given soy protein powders develop less prostate cancer than the control group, but what was the control group getting? Milk protein powder. Those randomized to the milk group got six times more prostate cancer than the soy group, but was that due to the beneficial effects of soy or the deleterious effects of the dairy? Dairy products are not just associated with getting prostate cancer, but also with dying from prostate cancer. Men diagnosed with prostate cancer who then ate more dairy tended to die sooner, and “both low-fat and high-fat dairy consumption were positively associated with an increased risk of fatal outcome.”

The best study we have on soy protein powder supplementation for prostate cancer patients found no significant benefit, and neither did a series of soy phytoestrogen dietary supplements. But, perhaps that’s because they used isolated soy components rather than a whole soy food. “Taking the whole-food approach may be more efficacious,” but it can be hard to do controlled studies with whole foods: You can make fake pills, but how do you give people placebo tofu?

A group of Australian researchers creatively came up with a specially manufactured bread containing soy grits to compare to a placebo regular bread and gave slices to men diagnosed with prostate cancer awaiting surgery. As you can see at 4:31 in my video, they saw a remarkable difference in just about three weeks time. It was the first study to show that a diet incorporating a whole soy food could favorably affect prostate cancer markers, but you can’t just go out and buy soy grit bread. Another study was a little more practical. Twenty men with prostate cancer who had been treated with radiation or surgery but seemed to be relapsing were asked to drink three cups of regular soy milk a day. The PSA levels in each of the 20 patients were all rising before they started the soy milk, suggesting they had relapsing or metastatic cancer growing inside of them. However, during a year drinking soy milk, 6 out of the 20 subjects got better, 2 got worse, and the remaining 12 remained unchanged, as you can see from 5:02 in my video. So, they concluded that soy food may help in a subset of patients.

Based on all these studies, the results Ornish and his colleagues got were probably due to more than just the soy. Similarly, the low prostate cancer rates in Asia are probably because of more than just the soy, since the lowest rates are also found in parts of Africa, where I don’t think they’re eating a lot of tofu. Indeed, in the multiethnic study, other types of beans besides soy also appeared protective for Latinos and all the groups put together, when looking at the most aggressive forms of prostate cancer. So, the protection associated with plant-based diets may be due to eating a variety of healthy foods. 

That soy milk stat from the Adventist study is astounding. What about fermented soy foods, though? That was the subject of Fermented or Unfermented Soy Foods for Prostate Cancer Prevention?.

Reversing the progression of cancer? See How Not to Die from Cancer.

Given the power of diet, it’s amazing to me how difficult Changing a Man’s Diet After a Prostate Cancer Diagnosis can be. It’s not all or nothing, though. Check out Prostate Cancer Survival: The A/V Ratio.

For soy and breast cancer survival, see Is Soy Healthy for Breast Cancer Survivors?.

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations:

Updating Our Microbiome Software and Hardware

Good bacteria, those living in symbiosis with us, are nourished by fruits, vegetables, grains, and beans, whereas bad bacteria, those in dysbiosis with us and possibly contributing to disease, are fed by meat, junk food and fast food, seafood, dairy, and eggs, as you can see at 0:12 in my video Microbiome: We Are What They Eat. Typical Western diets can “decimate” our good gut flora.

We live with trillions of symbionts, good bacteria that live in symbiosis with us. We help them, and they help us. A month on a plant-based diet results in an increase in the population of the good guys and a decrease in the bad, the so-called pathobionts, the disease-causing bugs. “Given the disappearance of pathobionts from the intestine, one would expect to observe a reduction in intestinal inflammation in subjects.” So, researchers measured stool concentrations of lipocalin-2, “which is a sensitive biomarker of intestinal inflammation.” As you can see at 1:13 in my video, within a month of eating healthfully, it had “declined significantly…suggesting that promotion of microbial homeostasis”—or balance—“by an SVD [strict vegetarian diet] resulted in reduced intestinal inflammation.” What’s more, this rebalancing may have played a role “in improved metabolic and immunological parameters,” that is, in immune system parameters.

In contrast, on an “animal-based diet,” you get growth of disease-associated species like Bilophila wadsworthia, associated with inflammatory bowel disease, and Alistipes putredinis, found in abscesses and appendicitis, and a decrease in fiber-eating bacteria. When we eat fiber, the fiber-munching bacteria multiply, and we get more anti-inflammatory, anti-cancer short-chain fatty acids. When we eat less fiber, our fiber-eating bacteria starve away.

They are what we eat.

Eat a lot of phytates, and our gut flora get really good at breaking down phytates. We assumed this was just because we were naturally selecting for those populations of bacteria able to do that, but it turns out our diet can teach old bugs new tricks. There’s one type of fiber in nori seaweed that our gut bacteria can’t normally breakdown, but the bacteria in the ocean that eat seaweed have the enzyme to do so. When it was discovered that that enzyme was present in the guts of Japanese people, it presented a mystery. Sure, sushi is eaten raw, so some seaweed bacteria may have made it to their colons, but how could some marine bacteria thrive in the human gut? It didn’t need to. It transferred the nori-eating enzyme to our own gut bacteria.

“Consequently, the consumption of food with associated environmental bacteria is the most likely mechanism that promoted this CAZyme [enzyme] update into the human gut microbe”—almost like a software update. We have the same hardware, the same gut bacteria, but the bacteria just updated their software to enable them to chew on something new.

Hardware can change, too. A study titled “The way to a man’s heart is through his gut microbiota” was so named because the researchers were talking about TMAO, trimethylamine N-oxide. As you can see at 3:33 in my video, certain gut flora can take carnitine from the red meat we eat or the choline concentrated in dairy, seafood, and eggs, and convert it into a toxic compound, which may lead to an increase in our risk of heart attack, stroke, and death.

This explains why those eating more plant-based diets have lower blood concentrations of TMAO. However, they also produce less of the toxin even if you feed them a steak. You don’t see the same “conversion of dietary L-carnitine to TMAO…suggesting an adoptive response of the gut microbiota in omnivores.” They are what we feed them.

As you can see at 4:17 in my video, if you give people cyclamate, a synthetic artificial sweetener, most of their bacteria don’t know what to do with it. But, if you feed it to people for ten days and select for the few bacteria that were hip to the new synthetic chemical, eventually three quarters of the cyclamate consumed is metabolized by the bacteria into another new compound called cyclohexylamine. Stop eating it, however, and those bacteria die back. Unfortunately, cyclohexylamine may be toxic and so was banned by the FDA in 1969. In a vintage Kool-Aid ad from 1969, Pre-Sweetened Kool-Aid was taken “off your grocer’s shelves,” but Regular Kool-Aid “has no cyclamates” and “is completely safe for your entire family.”

But, if you just ate cyclamate once in a while, it wouldn’t turn into cyclohexylamine because you wouldn’t have fed and fostered the gut flora specialized to do so. The same thing happens with TMAO. Those who just eat red meat, eggs, or seafood once in a while would presumably make very little of the toxin because they hadn’t been cultivating the bacteria that produce it.

Here’s the link to my video on TMAO: Carnitine, Choline, Cancer, and Cholesterol: The TMAO Connection. For an update on TMAO, see How Our Gut Bacteria Can Use Eggs to Accelerate Cancer, Egg Industry Response to Choline and TMAO, and How to Reduce Your TMAO Levels.

Interested in more on keeping our gut bugs happy? See:

In health,

Michael Greger, M.D.

PS: If you haven’t yet, you can subscribe to my free videos here and watch my live presentations: